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Abstract
With the move towards exascale, system and software developers will have to deal with issues of extreme
parallelism. The system properties affected most by the increase in node and core count are the shared
resources on node and across the system. The increase in parallelism leads to reduced memory and bandwidth
when regarding individual cores. Since power is a limiting factor for supercomputers, and power is not fully
utilized in current systems, overprovisioning compute resources is a viable approach to maximized power
utilization. To maximize system performance in regard to these changing conditions, it is necessary to
understand how resource restrictions impact performance and system behavior. For the purpose of
understanding anticipated system properties the GREMLINs Framework was developed. The framework gives
the opportunity to add power restrictions, hinder memory properties and introduce faults to study resilience,
among others. These features give the opportunity to use current petascale technology to study problems
system designers and software developers will have to face when moving towards exascale and beyond. This
work describes the initial release of the GREMLINs Framework, developed for this work, and shows how it
can be used to study the scaling behavior of proxy applications. These proxy applications represent a selection
of HPC workloads important to the scientific community. The proxy applications studied are AMG2013,
an algebraic multi-grid linear system solver, CoMD, a classical molecular dynamics proxy application and
NEKBONE, an application that uses a high order spectral element method to solve the Navier-Stokes equations.
The main interest of these studies lies in analysis regarding their power behavior at scale under a power bound.
These findings show how the GREMLINs Framework can help systems and software designers to attain better
application performance and can also be used as basis for CPU power balancing tools to use power more
efficiently.
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1 Exascale: Challenges for the Next
Generation of HPC

With the initial goal of reaching exascale, i.e. building a HPC (High Performance Computer) system with
performance of one exaflop or 1018 FLOPS (Floating Point Operations Per Second), by 2018 the DOE
(Department of Energy) set the maximum allowable power consumption of the envisioned HPC system to 20
MW [DOE 09]. When looking at todays Top500 list and the Green500 list and performing a projection towards
exascale the power values are far from this goal. Figure 1.1 shows the current systems performance plotted
against the systems efficiency. Looking at the currently best performing supercomputer, Tianhe-2 [T500 14],
both performance and efficiency has to improve by 2 orders of magnitude to reach exascale under 20 MW. The
most efficient system, the L-CSC at the GSI Helmholtz Center, achieves 5,271.81 MFLOPS/watt [G500 14].
With this efficiency a system would require 189.688 MW to reach exascale. Thus the energy efficiency of our
currently most energy efficient systems still has to improve by more than a factor of 9 to stay under the 20 MW
line. Japan’s ambitious goal of building their post-K system at the RIKEN AICS with a power consumption
of up to 30 MW will still have to solve the same efficiency problem [TSI 14]. Even with increased efficiency
energy costs will stay a major concern when acquiring a HPC system.

Figure 1.1: Exascale projection from the November 2014 Top500 and Green500 lists. [Saun 14]
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1 Exascale: Challenges for the Next Generation of HPC

Table 1.1: Potential Exascale Computer Design for 2018 and its relationship to current HPC designs. [DOE 10]

2010 2018 Factor Change
System Peak 2 PFLOPS 1 EFLOPS 500
Power 6 MW 20 MW 3
System Memory 0.3 PB 10 PB 33
Node Performance 0.125 GFLOPS 10 TFLOPS 80
Node Memory BW 25 GB/s 400 GB/s 16
Node Concurrency 12 cpus 1, 000 cpus 83
Interconnect BW 1.5 GB/s 50 GB/s 33
System Size (nodes) 20 K nodes 1 M nodes 50
Total Concurrency 225 K 1 B 4,444
Storage 15 PB 300 PB 20
Input/Output bandwidth 0.2 TB/s 20 TB/s 100

While improving compute capabilities, researchers and system designers have hit several boundaries. Some
of the widely known challenges in serial performance are the ILP (instruction-level parallelism) wall, the
power wall [SSC 14] and the memory wall [WuMc 95]. With reaching these scaling barriers for single
processors, HPC systems rely on high parallelism. There is a clear trend towards an increase in number
of CPU cores per node and regarding the overall system. When looking at the 100 fastest supercomputers
of the current Top500 list, there is no system present with less than 10,000 cores. The fastest system in the
current list has a core count of 3.12 million cores [T500 14]. With the increase in parallelism issues that could
be neglected so far will get more and more significance in the future.

A study form the DOE in 2010 projected how the specifications of an exascale system are likely to look
like in 2018. This prediction is shown in Table 1.1. Overall node performance will increase by a factor of
80. An issue here is the discrepancy of advances in the different system properties. For example with the
slower increase in node memory compared to node concurrency, more nodes will have to share the same
memory hierarchy on node. This means either a deeper memory hierarchy is needed or techniques have to be
developed to handle less memory per core. With this prediction more and more cores will have to share the
same memory hierarchy, thus the per core memory will decrease. This also means memory locality will gain
more significance since false sharing and cache misses are likely to increase.

The bandwidth is estimated to increase by a factor of 33, but with more nodes and cores in the system the
interconnect has to handle more messages. Changes in how messages are handled by the applications and the
programming model used to avoid flooding the system will be an important topic for future systems.

This is the case for scaling to high node counts already, but this is also dependent on the communication
pattern of the application running. Application specific topology reconfiguration on chip for minimizing
communication cost is already in use [SSC ]. For HPC systems dynamic interconnects and changeable
topologies are not cost efficient yet. To efficiently use an exascale machine handling messages and traffic
efficiently will be paramount to achieve good performance on large scale application runs with diverse
communication patterns.

The increase in overall concurrency will also increase the chance of system failure. A standard component
such as double-bit ECC memory has a mean time of failure of 1,500,000 hours. In a system like the Cray
XT5, a 1 petaflop (1015 FLOPS) system at ORNL (Oak Ridge National Laboratory) with 75,000 memory
modules this results in a mean time of failure of 20 hours for a single ECC double-bit error for the whole
machine [EOS 09]. For the increased probability of component failure introduced by increases in overall
concurrency, sophisticated recovery mechanisms are required, but also ways to predict recovery behavior.

The smallest increase seen in Table 1.1 is system power. The number listed in the table is of course the set
goal of reaching exascale under 20 MW. Building a more efficient supercomputer involves both using more
energy efficient components and increasing their utilization. The components and resources of the system that
are the bottleneck for achieving better performance should definitely be at maximum utilization. If we look at
the future performance bottleneck, which is power, this is not the case.

For SuperMUC, a 3 petaflop system at the LRZ in Garching, near Munich, a maximum power consumption
of 3.6 MW was observed during benchmark runs of HPL (High Performance Linpack). This power
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Figure 1.2: Configuration tests of NAS Parallel Benchmark sp-mz. Global power bound of 4500W for each
configuration. [Roun 14]

consumption is rarely achieved with most other applications. During normal operations a system power
variation of up to 2.7 MW was observed [SWAB ].

The power consumption of the system strongly depends on the constraints and characteristics of the
application executing. With a fixed maximum power supplied to the system not all of this power can be
used, with the percentage usable depending on the application and system properties.

A solution to increasing utilization of underutilized resources is overprovisioning [FeFr 04][PLR+ 13]. By
increasing the number of nodes (and thus cores) in the machine the power that was not usable by the machine
before due to application characteristics can be used by the added cores. Overprovisioning CPU cores requires
mechanisms to prevent the components to draw more power than available in the system as a whole. Limiting
the power drawn by the application can be assured by CPU frequency scaling techniques or other tools directly
limiting power. The techniques used can be either DVFS (Dynamic Voltage and Frequency Scaling) or the more
viable option used in this work: Intel’s RAPL (Running Average Power Limit)[Intel 09].

There have been studies that show significant performance gains using different system configurations with
power bounds applied. Finding an optimal configuration is achieved by searching and evaluating different
configurations by varying node count, core count and processor power bound. These configurations are
application and system specific and no naive configuration that guarantees improved performance exists.
Figure 1.2 shows one of the results obtained by Rountree et al. [Roun 14]. With lower core count and decreased
power per processor, the average watts used could be increased and the execution time reduced by over half.
The best configuration is outlined in blue, the worst in red [Roun 14]. This can be seen as an overprovisioned
system since the whole setup with the limit of 4500W could not run all 32 nodes using 16 cores with maximum
power, without violating the global power constraint. To the best of my knowledge, there is no HPC system
that uses the overprovisioning approach in a production system. Therefore these tests are generally conducted
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1 Exascale: Challenges for the Next Generation of HPC

on regular hardware by enforcing software limitations.

The goal of this work is to give the ability to study next generation supercomputers by emulating its resource
restrictions. The GREMLINs Framework is introduced to study and predict systems and performance behavior
of existing application on future systems. Using the framework gives system and software developers the
possibility to add resource restrictions and thus study power, memory, resilience and noise behavior in HPC
systems. This capability provides the opportunity to study their respective impact on application performance.
The framework offers easy extensibility for other resources the user is interested in. The GREMLINs
Framework is usable with any C/C++ or Fortran application using MPI (Message Passing Interface [MPI 14])
and does not require changes in the source code of the user application.

The rest of this work is structured as follows: Chapter 2 introduces the GREMLINs Framework. For
the chapters following the introduction to the GREMLINs the focus lies on analysis on power. The proxy
applications used in this work are introduced in Chapter 3. The experimental setup is described in Chapter 4,
followed by the scaling studies of the proxy applications in Chapter 5. In Chapter 6 an outlook is given on how
these results can be used for more power efficient supercomputing. Chapter 7 gives an overview on related
work, and closing with the conclusion in Chapter 8
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2 The GREMLINs Framework

The GREMLINs Framework originated in the need to know how current production codes, optimized for
petascale supercomputers, will behave on exascale architectures. The project is part of the Exascale Co-Design
Center for Materials in Extreme Environments (ExMatEx) [ExMatEx 14a] and was developed at Lawrence
Livermore National Laboratory (LLNL). The co-design center links the design and development of hardware
and software. This tight collaboration between developers in hardware, system software, middleware and
scientific software allows scientists working on the project to solve today’s hardest challenges in multiphysics
simulations of materials in extreme mechanical and radiation environments [ExMatEx 14a]. The primary goal
is to understand, develop and efficiently use exascale HPC systems.

With performance modeling and architectural simulation it is possible to predict the anticipated properties
of future generation HPC systems. These models and simulations build a sophisticated theoretical approach
for prediction. The shortcoming of using only these two techniques is also their big advantage: High level
of detail. The high level of detail that is required to model a system precisely introduces high complexity.
This makes it hard to use in practice. A more practical approach to study anticipated HPC configurations is
emulation.

The GREMLINs Framework is a tool to emulate the architecture of next generation HPC systems. It
focuses on emulating resource restrictions which are introduced by high parallelism and concurrency. With this
approach low level details can be studied on real hardware at scale, running on current HPC installations. Using
the GREMLINs Framework domain scientists can study application behavior with the emulated hardware
specifications. This allows them to gain insight on what important issues will occur in an exascale environment.
These insights can then be fed back to the system developers for optimization and changes can be introduced
to cope with the negative effects observed. The design of hardware, system software and middleware with
the goal of achieving the best ecosystem for scientific applications is one of the main ideas of the co-design
initiative for exascale.

The combination of architecture emulation, analytic modeling and architectural simulation provide a holistic
performance model, as depicted in Figure 2.1. Together these can be used to better understand future
generations of HPC systems. Several studies to evaluate the feasibility of such an emulation approach were

Figure 2.1: Approach to a holistic performance model [GREM 14b]

conducted as part of ExMatEx. The GREMLINs Framework combines these proof of concept implementations
originating from the studies performed in a single framework. In the following section the GREMLINs
Framework and its building blocks are introduced.

2.1 GREMLINs Overview
The GREMLINs Framework emulates the behavior of anticipated future architectures on current HPC systems.
An open source version of the project is available on the GitHub site of the LLNL scalability team [GREM 14a].
The framework focuses on two techniques: First, resource limitations by artificial restriction to emulate either
high load or low availability on a per processor basis in a future system. Second, interference by noise and
faults. The impact of the system noise and soft and hard faults are emulated by injection techniques. With
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2 The GREMLINs Framework

Figure 2.2: The architecture of the GREMLINs Framework.[GREM 14b]

these two techniques most challenges anticipated for future HPC systems can be sufficiently emulated to be
able to make predictions about their impact on application performance and behavior [SBB+ 13].

The GREMLINs Framework consists of four major classes of GREMLINs:

• Power: artificially reduce the operating power of the CPU
• Memory: limit resources in the memory hierarchy, by running interference threads or processes
• Resilience: inject faults into target application
• Noise: inject noise events to emulate system and operating system interference

The framework is built in a modular fashion and is easily extensible. The workflow of the GREMLINs
Framework is intended as follows: The user is interested in the behavior of a specific application under exascale
conditions. The application is setup on a HPC resource with the GREMLINs Framework installed. The user
decides which system property should be modified and selects the appropriate GREMLINs. The parameters
for the selected GREMLINs are set for the anticipated hardware settings or restrictions. The GREMLINs
are loaded at program startup, during the initialization phase. The program is then run without additional
modifications, or the need to recompile for individual GREMLINs. The user can perform measurements using
his performance measurement tool of choice to gain insights on how his code would behave under the emulated
conditions. The different GREMLINs can be used individually or by combining multiple GREMLINs to
emulate the exact configuration the user wants to observe.

Figure 2.2 shows the high level architecture concept of the GREMLINs Framework. The GREMLINs are
controlled via environment variables which directly impact how the system resource under alteration behave.
The feature of cloning of ranks as seen in Figure 2.2 is not supported yet. Since the target applications are
large scale HPC applications the framework relies on MPI, the Message Passing Interface standard [MPI 14],
which is the de facto standard for parallel applications running on distributed memory systems.

The GREMLINs Framework is provided as a set of libraries intercepting the regular MPI function calls.
This is possible thanks to the design of the MPI standard profiling interface PMPI. A single GREMLIN is

6



2.2 Power GREMLINs

preloaded using LD PRELOAD. Depending on the function of the GREMLIN different standard MPI calls are
intercepted. In general the compulsory functions MPI Init() and MPI Finalize() are intercepted to
initialize the GREMLIN functionality. During the program execution the GREMLIN can again intercept MPI
function calls or listen for events or signals. Using signals and timers, random or periodic events such as faults
and system noise can be emulated. The individual GREMLINs try to be as general as possible and do not
use any application specific features. If needed the functionality provided can be used to build an application
specific GREMLIN. As mentioned earlier it is not needed to recompile the user application for usage with
different GREMLINs. However, initially dynamic linked libraries have to be enabled. This is done by linking
the dynamic linker/loader library ld.so (see: man 8 ld.so).

PnMPI [ScdS 07] is used to combine multiple GREMLINs. PnMPI is a low-overhead PMPI library, that
allows users to chain several PMPI tools together. For this work PnMPI was extended to handle signals and
timers, which are redirected only to the tools that either registered or need to know about these events. The
extended version of PnMPI can also be found on the GitHub web page of the LLNL scalability
team [PnMPI 09].

The GREMLINs use another powerful tool shipped with the PnMPI tool: the wrapper generator wrap.py
developed for the libra tool [libra 08]. wrap.py transforms code written in a domain-specific language as a
wrapper file into C/C++ or Fortran, creating source code for PMPI libraries. There are two main advantages
of using a wrapper generator for writing PMPI libraries: First, there is no need to write both Fortran and
C/C++ while being compatible with both. This is important since there are a lot of production codes using
MPI in both languages. Second, in a GREMLIN several of the functions are likely to have the same structure.
wrap.py allows to write the code structure in a abstracted form. With this abstraction there is no need to
rewrite boilerplate code, which helps in developing clean code for the GREMLINs.

For building and installing, the GREMLINs Framework relies on CMake [CMake14] to ensure portability
across systems. CMake is intended as an out of source build tool for the GREMLINs Framework to ensure
clean source, build and install directories. For running the GREMLINs it is sufficient to LD PRELOAD the
desired GREMLIN and running the target MPI application. The instructions for building, installing and
running the GREMLINs are provided in the README file. To use multiple GREMLINs with PnMPI, the
desired GREMLINs have to be patched using pnmpi-patch. After this the patched GREMLINs libraries
can be loaded as modules in the .pnmpi-conf file.

In the following sections, the different kinds of GREMLINs and their usage are introduced.

2.2 Power GREMLINs

The intention of the Power GREMLINs is to emulate the power limitations and other power related issues on
future systems. For exascale systems it is important for the developer to understand the power characteristics
of their applications. This is not only the case for low power scenarios but also since applications have different
phase behavior that draw different amounts of power.

Ideally this information can be used on the system side to maximize efficiency and the application developer
can be agnostic about this information. Using the Power GREMLINs both application and system developers
can better understand application behavior in power restricted environments. The focus of the
Power GREMLINs is CPU power consumption.

In HPC there is always a tradeoff between power and performance. Some of today’s HPC systems have
different energy or frequency modes for the user to choose from. These are mostly static and job bound.
For example IBM Loadleveler on SuperMUC offers the option run with different CPU frequencies with
the primary objective to save energy [LRZ 13]. The goal for exascale and beyond is not primarily to save
energy, but to use all power that is available in the system with a maximum efficiency. The primary goal is to
maximize performance. With different application characteristics, phase behavior and their respective power
characteristics, controlling CPU frequency and CPU power are of paramount importance for maximizing CPU
performance and power utilization.

The best known technique to control clock frequency and thus power consumption is DVFS. Directly
controlling CPU clock frequency to balance power consumption while achieving maximum performance is
hard from a tools and application perspective. It is not always clear how clock frequency impacts performance
and thus the power behavior of different code segments. It can be claimed that DVFS is only loosely correlated
with power consumption and thus has only limited applicability compared to directly setting power limits.

7



2 The GREMLINs Framework

With the introduction of Intel’s Sandy Bridge processor family a different abstraction for controlling these
CPU parameters was introduced: RAPL (Running Average Power Limit) [Intel 09]. RAPL provides on board
power meters and power clamping. This allows to set limits to power consumption over a specific time period
on the order of milliseconds. To satisfy this power bound the CPU will be throttled to guarantee that the
average power limit is not exceeded. The specifics of RAPL and their utility are discussed by Rountree et
al. [RAdS+ 12].

The RAPL functionality is exposed via MSRs (model-specific registers). These registers are accessible via
the privileged instructions readmsr and writemsr. For the use in the Power GREMLINs these are not used
directly since the GREMLINs are a tool intended for the user. The RAPL functionality is exposed via a kernel
module that allows safe access to MSRs on Intel processors, msr-safe [ShRo 14b]. libmsr [ShRo 14a]
implements a more user friendly interface to the kernel module msr-safe. To use the power GREMLINs,
the kernel module msr-safe and the libraries of libmsr have to be installed and available on the system.

To use libmsr, the libraries msr core.h and msr rapl.h have to be included. Access to power
settings via the MSRs is controllable on a per package granularity. To avoid confusion the term package will
be used over the term CPU socket throughout this work. libmsr needs to be initialized using init msr()
and to finalize usage finalize msr; is used.

The Power GREMLINs consist of four different GREMLINs, each with a specific purpose:

• powerBound.w
• globalPowerBound.w
• powerMeter.w
• terseInfo.w

powerBound.w gives the ability to set a package specific limitation to the power consumed by each processor
contained in the package, called a power cap or power bound. The environment variable POWER CAP is used
to set the power cap for all packages. This guarantees that on average no package will consume more than this
value in watts. This average is guaranteed over a time period of 0.001 seconds. To set a different power cap
for a specific package POWER CAP%d is used, where %d is the nth package of the system. The order of the
packages are counted in order of MPI rank.

globalPowerBound.w is used to set a global power cap that limits the combined power consumption of
all packages in a single MPI program. The environment variable POWER CAP GLOBAL is set for this global
limit. The GREMLIN is implemented in a naive way. This means that every package shares the same per
package power cap, which is calculated by dividing the global power cap by the number of packages involved
in the program execution. This provides an easy way to emulate overprovisioned systems. The emulated
overprovisioned system thus has more CPUs than it can run at full speed obeying the global power cap. Since
this is a naive implementation powerBound.w and globalPowerBound.w should not be combined.

powerMeter.w provides an easy way to dump periodic power values. The time interval in between the
measurements is specified via the environment variables INTERVAL S and INVERVAL US, in seconds and
microseconds respectively. The output is generated per node and the output directory is specified by the
environment variable NODE OUTPUT PATH. If NODE OUTPUT PATH is not set stdout is used to print the
output as default. powerMeter.w dumps information about the time of measurement in seconds and package
power in watts. DRAM power is included, but the values are zero by default since libmsr does not provide
this information at the time of writing. The power measurement starts with an initial measurement before
the user applications returns from MPI Init() and ends with a final measurement for the user application
calls MPI Finalize(). Since the information is dumped on a per node basis, the environment variable
PROCS PER NODE needs to be set.

terseInfo.w behaves similar to powerMeter.w but provides additional information in a terse format
which can be read from the MSRs. The functions used for dumping the information are all dump X terse()
functions provided by libmsr. These include power information, provided by dump rapl terse(), but
also information about thread frequency via dump clocks terse() and core temperature provided by
dump thermal terse().
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All Power GREMLINs need the environment variable PROCS PER PACKAGE set according to the system
specification, to calculate the package number correctly. For compatibility reasons only one GREMLIN to
measure and one GREMLIN to control power should be used simultaneously.

2.3 Resilience GREMLINs

The Resilience GREMLINs stress applications by introducing faults and errors. MPI itself is not fault tolerant
and does not provide recovery techniques. With current systems the fault rates are too infrequent to successfully
test fault tolerance models and recovery strategies on real hardware. The Resilience GREMLINs provide this
opportunity by emulating faults. The user can specify fault rates of an emulated fault. The faults try to emulate
the characteristics of real world faults. If the user expects a different kind of fault, the GREMLIN can be
extended to the expected fault behavior.

The fault injector itself was written by Ignacio Laguna [SBB+ 13]. To inject faults in the user application
the signals SIGUSR1 and SIGUSR2 are used. This indicates whether a fault occurred and does not really
crash the application. The rate at which faults are injected is given in errors/hour. This can be controlled using
the environment variable FAULT RATE. For this GREMLIN, the application has to have a resilience model
built in that responds to this kind of fault. In other words the signals SIGUSR1 and SIGUSR2 have to be
identified as faults.

The repository [GREM 14a] provides an example to test the Resilience GREMLINs. For this, Livermore
Unstructured Lagrangian Explicit Shock Hydrodynamics (LULESH), a well studied proxy application is
used. The implementation provided includes two shell scripts create patch.sh and patch code.sh.
If applied, the resulting patched version of LULESH detects user signals and has a simple try and restart
mechanism built in, which restarts if a signal is received during execution.

Figure 2.3 shows the execution of the patched LULESH application. Each iteration prints a dot if executed
successfully. After the first run, the environment variable FAULT RATE is set to 360. This environment
variable sets the rate at which faults occur per hour. If the Resilience GREMLIN is preloaded with the above
setting, approximately every 10 seconds a user signal is sent to the application, indicating an error. The
application responds to this by restarting the faulty iteration. This is done until the last iteration is completed
successfully and the program exits. The failed iterations are indicated by printing an X to the output as seen
in the second part of Figure 2.3.

2.4 Memory GREMLINs

The Memory GREMLINs try to alter memory behavior to emulate memory restrictions that are likely to occur
in exascale machines. This includes but is not limited to memory size, memory bandwidth, restrictions in the
cache hierarchy and cache sizes. The functionality used by the Memory GREMLINs implemented builds on
a modified version of a memory library written by Marc Casas Guix [CGBr 14]. The GREMLIN so far only
includes cache capacity interference and memory bandwidth interference.

For stealing cache and bandwidth additional processes are needed that stress these resources. This has to
be done in a way transparent to the user application. During the initialization phase a new communicator is
created. The original communicator MPI COMM WORLD includes all processes. It is split into two groups, one
for the contaminating processes and one for the processes that are actually involved in running the application.
In subsequent calls to MPI functions that uses the communicator MPI COMM WORLD the communicators are
switched out. The user application uses the communicator that only includes the processes for running the
application while thinking it is using MPI COMM WORLD. For this, the MPI program is started with a surplus
of processes, since extra processes are needed for the contamination. The GREMLIN is again controlled via
environment variables: N NODES indicates how many nodes are used for the program. N CONTS is set to
the number of contamination processes. N CORES includes the number of cores used for normal program
execution plus contamination processes. BUFFER is used to indicate how much memory a single interference
processes should use. Using the environment variable METRIC the type of memory interference can be chosen.
The above variables, above all, N CONTS and BUFFER have to be fine tuned to achieve the desired results.
The method used for the interference as used by the Memory GREMLIN is described in [CGBr 14]. This
should also give insights on how to configure the variables for the desired interference.
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Figure 2.3: Running a proxy application with and without the Resilience GREMLIN.

When a program is executed using one of the Memory GREMLINs, on each node the specified amount of
contamination processes are created. Depending on the environment variable METRIC, restrictions in cache
capacity or memory bandwidth are emulated. The GREMLIN for memory bandwidth interference tries to
transfer big amounts of data between memory levels. This is achieved by introducing frequent memory misses
to keep memory transfers active. The GREMLINs memory access patterns are specified in a way to maximize
the bandwidth used by a single interference process. These sustained transfer rates are thus higher than those
achieved during normal program execution by user applications over a longer period of time. The cache
capacity interference tries to keep the memory in the cache by random access.

With these techniques the user program has either only a smaller amount of bandwidth or smaller cache
sizes for itself. This gives the possibility to emulate the increase of cores per node in respect to memory
behavior.

2.5 Noise and other GREMLINs

Noise GREMLINs are another kind of GREMLIN for predicting performance behavior of applications on
exascale machines. System noise is likely to increase since the overhead of managing huge number of nodes
also includes increase in overhead to do so. Types of noise can be noise generated by the operating system
but also other applications running on the same installation. Applications on the same installation can include
increased network traffic or limited access to storage. Noise can also be introduced by the application to be
executed itself. This can be noticeable by reduced resource availability or increased latency for accessing
specific resources or services. Noise can be emulated by adding access delays for specific resources. This can
be done randomly or following a specific or expected distribution.

So far no Noise GREMLIN was developed for the GREMLINs Framework. This section tries to encourage
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Figure 2.4: Source code of a Noise GREMLIN to introduce noise on the interconnect.

developers interested in the performance and emulation of exascale systems to implement their GREMLIN of
interest. The Noise GREMLIN serves as example and will show the ease of use of the tools used and provided
by the GREMLINs Framework.

The GREMLIN will increase noise on the interconnect by introducing increased network traffic. This is
done by calling the specified MPI communication n times instead of only once. To achieve this every MPI
function that sends out messages has to be rewritten, to execute the respective function n times. It should
be noted that this is not useable for all MPI calls. Functions like MPI Reduce and MPI Isend can show
unexpected behavior when using this repetition to introduce noise.

The example code for such a wrapper file is shown in Figure 2.4 The abstraction provided by wrap.py
allows to simply list all functions that should behave the same, instead of rewriting all by hand. The functions
are implemented in a syntax similar to C/C++. Instead of the respective MPI function calls, the function
{{callfn}} is used. This handles the function call using the original MPI function provided by the MPI
implementation used. This means passing control to any underlying MPI implementation. With the use of
PnMPI this can also call other GREMLINs or PMPI tools. After finishing communication the MPI function
returns and control is again in the hands of the GREMLIN, before the GREMLIN returns it to the user
application. As seen in Figure 2.4 this is used to repeatedly call MPI in this example. Since send and receive
functions are not reordered but only called n times, as specified by the environment variable
MSG REPETITION, no deadlock can occur. The application behavior itself is not altered, since only the
last message received is actually used. Another possibility to introduce noise as specified above is to call a
random sleep timer before executing {{callfn}}. This would emulate high latency variation.

To use the new GREMLIN only the CMake file has to be changed. The library generated can then be
preloaded using LD PRELOAD or combined with the other GRMELINs using PnMPI.

For implementing one’s own GREMLINs the released GREMLINs can be used as guideline. wrap.py
provides more functionality than covered in this chapter. It is a powerful tool ideally suited to write
GREMLINs without too much effort and can save a lot of development time. Details regarding wrap.py
can be found on the project website [libra 08].
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This chapter introduces the proxy applications used to analyze power behavior for large scale scientific
applications. A proxy application is a small application consisting of a reduced subset of a production code.
It is well-suited to analyze for developers that are non-domain scientists. Proxy applications that capture
workloads of production codes help to understand performance bottlenecks on real hardware while staying
small and understandable. This gives the possibility to study a close approximation of the real application
without having to handle a full production code.

Since proxy applications are open source, they can be studied by a wide audience to help understand and
optimize HPC systems for scientific workloads. In contrast to benchmarks, proxy applications capture real
scientific workloads. Heroux et al. [HNS 13] give a list of aspects of proxy applications that are of particular
interest:

• Algorithms
• Data structures and memory layouts
• Parallelism and I/O models
• Languages and coding styles

These characteristics are important for having a code base that is reliable, performance portable and running
with high efficiency on current and future generations of HPC systems. Proxy applications give a testbed for
trying new approaches to any of these points. Changing one of those application characteristics may require
a total rewrite of the proxy application. Since the code base is relatively small and understandable this can be
achieved easily compared to making these changes to the production code itself. The optimized or changed
proxy application can then be evaluated against the original proxy application. When changing any of the
above mentioned application characteristics in a benchmark, the specific metric captured is not comparable to
previous executions anymore. Proxy applications make it easy to evaluate these changes.

In this work none of the above mentioned aspects are directly changed. Thus benchmarks or proxy
applications can both be used to see the changes of how the GREMLINs impact the application execution.

However the GREMLINs are designed to allow understanding of application runs of production codes on
next generation HPC systems. Since the GREMLINs can impact any of the above mentioned aspects proxy
applications are the main focus of this work. The information gained from running a GREMLIN that is
tampering with the program execution can be fed back into the development cycle. To handle the difficulties
introduced by the emulated environment changes have to be made to the proxy application or the system.
These changes are then again reflected in one or more of the above mentioned aspects of the proxy application.

There are several kinds of proxy applications: kernels, skeleton apps and mini apps [HNS 13].

• Kernels represent the main workload of a production code. The kernel consists of the most compute
intensive function of the application and are often a implementation of a specific mathematical solver.
For these the per processor execution time has to be optimized. Kernels provide a good proving ground
for algorithmic changes, testing data structure and altering memory layouts. Since proxy applications
try to be minimal there is likely no parallelism involved if the mathematical model does not require it.
Production code applications may consist of several compute kernels.

• Skeleton apps capture the I/O and memory transactions required to execute the production code. The
main target here is network performance and characteristics. The mathematical model is most often
not implemented at all or only captured rudimentary. Skeleton apps are suited best to test different
distributed memory layouts, parallel language paradigms and I/O models.
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• Mini apps combine a single compute kernel of the production code with the memory and network
interactions and simple I/O. These stand-alone applications describe a simplified version of a physical
phenomenon captured by the production code. Input values are provided by small input files or are
hard coded. The focus of a mini app can range from explicit snippets to complete execution paths of a
production code.

The proxy applications studied in this work are mini apps using MPI for their parallel execution.
The Department of Energy has several proxy applications of interest to them. The production codes

represented in those proxy application codes consume a significant fraction of the execution times at different
HPC installations of the DOE. The proxy applications are mostly developed by DOE co-design centers like
ExMatEx [ExMatEx 14b] or CESAR [CESAR 13], but also play an important role for acquiring new HPC
systems [Ward 14].

This work focuses on three proxy applications: AMG2013, a parallel algebraic multigrid solver for linear
systems on unstructured grids [AMG 13]; CoMD, a classical molecular dynamics code, used in the ExMatEx
co-design process [CoMD 13]; and NEKBONE, a thermal hydraulics mini-application [FiHe 13b].

The proxy applications AMG2013, CoMD and NEKBONE reproduce performance characteristics of 3
different production codes used in scientific computing. These mini applications capture the computational
intensive kernel of the application, its communication characteristics and essential parts to mimic the behavior
of the production code. The different power levels observed mainly reflect how computational intensive the
kernels are. This can be measured by the amount of arithmetic operations performed per memory access.
Characteristics that also impact power consumption are what kind of arithmetic operations the compute kernel
requires and whether the CPU pipelines are fully utilized. The single node power observations build the
baseline for the scaling studies of Chapter 5. The following sections introduce the proxy applications used in
this work and their single node power behavior.

3.1 AMG2013

The proxy application AMG2013 [AMG 13] is a mini app derived from the AMG (algebraic multigrid) solver
used in the hypre library [FaMY 02], BoomerAMG [VEMY 00]. The solver is a scalable AMG implementation
that is known to be able to solve problems involving tens of millions of unknowns on several thousands of
processors. AMG2013 is a SPMD (Single Program, Multiple Data) application written in C using MPI and
OpenMP. For simplicity only MPI is used in this work.

Algebraic multigrid solvers are in wide use in scientific applications. Example use cases for AMG solvers
are simulations of plastic and elastic deformations of explosive materials at LLNL. Other use cases include
the modeling of fluid pressure in the eye, the speed-up of simulations for Maxillo-facial surgeries to correct
deformations, sedimentary basin simulations in geosciences or the simulation of magnetohydrodynamics
formulation of fusion plasma [BGSY 11].

In contrast to the geometric multigrid method, the algebraic multi grid method does not use the geometric
information of the grid and thus is a more general approach. The AMG method uses an iterative approach
for convergence towards a solution. The method moves between coarse and fine grids. The operations to
get an optimal solution while performing these steps are smoothing and interpolation. Initially the structure is
represented as a fine-grained matrix. When moving from fine to coarse, a smoother is applied to eliminate high
frequency errors. At the coarsest level a relatively small linear system is solved. To solve the linear system
at a coarse level is relatively inexpensive compared to the fine grid. When moving back from coarse to fine,
the calculated solution is interpolated, to propagate the estimated solutions over the different grid granularities
used for the specific AMG method. At the finest grid level the calculated solution is compared to a estimated
solution and the process terminates if the residual error is small enough.

AMG is of particular interest to the scientific community and HPC due to good parallelizability and a better
scaling behavior compared to other methods. Algebraic multigrid scales in O(N), where N is the number of
unknowns in the linear system to solve. Because of the fact that it uses a generalized representation of the
grid, AMG can work on unstructured grids and is applicable where other methods are unusable. A formal
introduction to algebraic multigrid solvers is given in [Stüb 99].

AMG2013 implements the algebraic multigrid method according to the hypre library. When running
AMG2013 the user can select from several different solvers and preconditioners. A preconditioner is a
preliminary step to bring down the conditional number of the linear system. This leads to faster convergence
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and better stability of the method. AMG2013 uses AMG itself as a preconditioner if selected. For solving the
linear system the user can choose PCG, a preconditioned conjugate gradient method, or GMRES, a general
minimal residual method. In production codes AMG is often used as a preconditioner for both congugate
gradient or GMRES.

The AMG method consists of several phases: the setup phase and the solve phase. In the setup phase the
different levels of grid granularity are set up, and how these are connected to the levels above and below. In
the solve phase the actual computational iterations are performed.

Since the interest of this paper lies on the power consumption, the power consumption for a baseline run
using a single node are measured. Figure 3.1 shows the power profile of of a small run. The average power
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Figure 3.1: Power profile of AMG2013’s solve phase. The selected configuration solves a 3D 7-point Laplace
problem on a cube using the PCG solver. Time resolution of measurement: 0.1 seconds.

consumption, measured in a 0.1 second interval, is ∼103 watts in the solve phase. Initially a lower power
consumption of 92 watts is seen. The lower power consumption does not correspond to the setup phase, which
is completed after less than 0.1 seconds for this small single node test. The setup phase thus is neglectable
here and most time is spend in the solve phase. After 0.5 seconds the power consumption stabilizes in the
solve phase and an average of 103 W is observable for the rest of the test run. During the solve phase the
power consumption stays relatively constant with a variance of less than 0.7 watts. The two packages show
a difference in power consumption with an average difference of 1.1 watts. In this test socket PGK0 always
consumes less power than PKG1.

This run was executed on a single node using 16 MPI processes on LLNL’s cab system. Regarding the
pattern of power consumption the same is observed on both packages with a variance of only 0.2 W. Thus
it can be said that both packages observe the same constant power behavior in the compute kernel of the
AMG2013 proxy application.

3.2 CoMD

The proxy application CoMD is a mini app describing a classical molecular dynamics code. CoMD is a
ExMatEx proxy application [CoMD 13] and written in C. There are three implementations: a serial version, a
version using OpenMP only and a version using MPI only. In this work the MPI version is used. Molecular
dynamics codes are not only an important case of N -body methods. They are used in many different fields
from computational chemistry and biology to fluid dynamics simulation and material science. In molecular
dynamics materials are represented as individual atoms or molecules. The interaction between the particles is
expressed as force interactions, with each particle having a position and velocity. Molecular dynamics describe
the Newtonian equations of motion, while conserving energy. The simulation obeys the conservation of energy
with changes in kinetic energy and temperature.

The high level of detail of a molecular or atomic based simulation requires statistical approaches to predict
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larger structures. Molecular dynamics simulations are a very useful tool to supplement measurements that are
hard or nearly impractical for a laboratory setting. The technique allows to study the behavior of molecules
that have not been synthesized yet, or particles that are too short lived to measure with current equipment.
The simulation environments can be changed to extremes that are not feasible in a laboratory environment. To
conduct experiments at a few nanokelvin or near the temperature of stars may not be possible while staying
within budget. For molecular dynamics simulations high pressures or extreme temperatures are only a change
in parameters.

Examples for production codes using molecular dynamics include ddcMD [GBB+ 12][SGP+ 06], developed
at LLNL, and SPaSM [KGL 06], a high energy physics code developed at LANL (Loas Alamos National
Laboratory). Production runs for these applications often run on the complete HPC system and still show good
scaling behavior. Thus it is important too predict and identify the most critical factor for good performance in
a molecular dynamics simulation in an exascale environment.

CoMD is a general molecular dynamics simulation. Molecular dynamics simulations run in discrete time
steps. The spacial domain is distributed across nodes using cells, where each MPI process is responsible for
one cell and the atoms the cell contains. In CoMD the initial step of each iteration is to update the velocity of
each atom. Using these values, the positions of the atoms are updated. Atoms that moved to a different cell
are redistributed and information from neighboring cells is gather for the next step: the force calculation. The
force calculation is divided in two separate steps, first the interacting atoms are identified, second the forces of
the interacting atoms are computed. The maximum interaction range of the atoms forces under consideration
are smaller than the size of a single cell. With this implication only the atoms within the cell itself and its
neighboring cell have to be considered for interaction. This reduces the amount of communication needed to
neighboring cells. As a final step the forces can be computed to update the velocity for the next iteration.

Figure 3.2 shows the consumption that could be observed on a single node test run using 16 MPI processes
on LLNL’s cab system. The average power consumption, measured in a 0.1 second interval, is ∼85 watts.
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Figure 3.2: Power profile of CoMD execution. The selected configuration solves the Lennard-Jones potential
with approx. 110000 atoms. Time resolution of measurement: 0.1 seconds.

In contrast to AMG2013 there is no initial phase, and within 0.1 seconds both packages are in the compute
kernel. The power profiles of the packages show a maximum variance of 0.4 watts and are constant over the
runs on both packages. Again a difference in power consumption is observable between packages with an
average difference of 2.2 W . In this test run package PKG0 always consumes more power than PKG1.

The pattern observed for power consumption is again constant and similar for both packages for the CoMD
proxy application.
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3.3 NEKBONE
NEKBONE [FiHe 13b] is a proxy application, based on the open source spectral element code NEK5000
developed at ANL (Argonne National Laboratory) [FLK 08]. Using the fluid dynamics code of NEK5000
scientists study the unsteady incompressible fluid flow in two and three dimensions. The design goal is
to implement scalable turbulence simulations in complex domains using LES (Large Eddy Simulation) and
DNS (Direct Numerical Simulation). Examples for the use of NEK5000 are reactor thermal-hydraulics,
astrophysics, combustion, oceanography, or vascular flow modeling. NEK5000 won a Gordon Bell prize for
its outstanding scalability for a fluid dynamics simulation and was designed as part of the CESAR co-design
effort [CESAR 11].

NEK5000 uses a higher order spectral element method to solve the Navier-Stokes equations. In contrast
NEKBONE solves the Helmholtz equation using the spectral element method. The proxy application is a
mini app focusing on three dimensional geometries that exposes the main computational kernels to reveal the
essential elements of NEK5000. For this NEKBONE uses a standard Poisson equation and conjugate gradient
with a simple or spectral element multigrid preconditioner.

NEKBONE is shipped with six example configurations representing different workloads of NEK5000.
NEKBONE and NEK5000 show similar scalling behavior and memory requirements. The configuration files
for NEKBONE are set in the SIZE file and the data.rea file. The SIZE file sets parameters fixed after
compiling. These values include the polynomial order of the simulation, the maximum number of processors
as well as the maximum number of elements per processor and the maximum total elements. The data.rea
file sets runtime parameters.

NEK5000 and NEKBONE are open source and implemented in Fortran77/C, using MPI for parallelism.
The readme.pdf file [FiHe 13a] gives a more detailed overview including instructions to build and run the
application.

Figure 3.3 shows the power profile of a single node run on LLNL’s cab system. The average power

0
20

40
60

80
10

0

time [s]

P
K

G
 P

ow
er

 [W
]

Power PKG0
Power PKG1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37

Figure 3.3: Power profile of NEKBONE execution. Time resolution of measurement: 0.1 seconds.

consumption measured in a 0.1 second interval is ∼103.5 watts. The power consumption start to increase
over the course of the execution. After 0.2 seconds the power consumption starts to increase from 100 W
to 104 W . After 14 seconds the power consumptions drops below 100 W for 0.3 seconds, and stays above
∼103 W for the rest of the execution time. Both packages show similar power behavior, with no package
having consistently lower or higher power consumption as seen in the proxy applications introduced above.

17





4 Experimental Setup and Methodology

The research objective is to analyze application and system behavior for multi node parallel jobs using the
proxy applications introduced above. This chapter introduces the experimental setup used to conduct the
measurements. All experiments were set up and run on the cab system at LLNL. At the time of writing, the
cab system is the only HPC resource at LLNL with the msr-safe kernel module installed and thus is the
system of choice for this work. The following sections introduce the hardware and software of cab used to
make the measurements possible. The final section of this chapter introduces the experimental setup for the
weak and strong scaling studies on up to 256 nodes, which are evaluated in Chapter 5.

4.1 Hardware Setup

Cab consists of a total of 1296 nodes. Each node has 2 Intel Xeon E5-2670 CPUs with 8 cores each, giving
a total of 20736 CPU cores. These CPUs are of the “Sandy Bridge EP” microarchitecture using 32 nm
technology. The specified CPU speed is 2.6 GHz with a maximum turbo frequency reaching 3.3 GHz. Each
node has 32 GB of memory, giving a total system memory of 41.5 TB. The peak CPU memory bandwidth
reaches 51.2 GB/s. The TDP (Thermal Design Power), the average power in watts drawn by the processor
under a Intel defined high-complexity workload, is 115 W.

The TDP is measured while operating at base frequency with all cores active [Intel 12]. The maximum
power clamp applied is 115 W since no application was able to used more power. The measurements have
been taken with turbo boost deactivated for better predictability.

The interconnect used in the system is InfiniBand QDR by QLogic.
The system has two node scheduling pools: 32 nodes designated for debug runs and 1200 nodes for batch

job execution. The system restricts the user to a maximum of 258 nodes per job with a maximum runtime of
16 hours for the batch scheduling pool [LC 14]. These usage restrictions build the outline for the experiment
setups.

4.2 Software Setup

The operating system used on the majority of Livermore HPC installations is TOSS. Cab uses TOSS 2.2, the
Tri-Lab Operating System Stack. TOSS is the operating system formerly developed as CHAOS, the Clustered
High Availability Operating System. The operating system is derived from Red Hat Linux. The changes
include special customizations for high performance computing hardware, the Lustre parallel file system
and system monitoring [LC 10]. TOSS is in wide use across the three NNSA (National Nuclear Security
Administration ) laboratories, LLNL, LANL (Los Alamos National Laboratory) and SNL (Sandia National
Laboratory).

The compiler used for the work is Intel’s ICC, version 12.1.5. Regarding MPI, MVAPICH2 [OSU 14] is
used, with the compiler version mvapich2-intel-debug-1.9.

The tools needed to run the GREMLINs as introduced in Chapter 2 are modified development versions.
PnMPI uses a modification of version 1.4. The modified version supports timers and signals and is to be
included in the next release on the official GitHub web page [PnMPI 09]. The wrapper tool is provided
by PnMPI. libmsr and msr-safe are used as provided and installed on cab. These versions are the
initial releases publicly available via the projects GitHub web page [ShRo 14a][ShRo 14b]. The GREMLINs
framework is the initial release provided via GitHub [GREM 14a], developed for this work.

The proxy applications used are the public releases available via the CESAR [CESAR 13],
ExMatEx [ExMatEx 14b] and CORAL [Ward 14] Project pages.

The AMG2013 version used is provided via the co-design web page [AMG 13] and can also be found in
the CORAL Benchmark Codes [Ward 14]. The configuration used is a slight alteration of the configuration
provided with the proxy application. To get comparable runtimes across different node counts from 1 to
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256 nodes, the convergence check was disabled resulting in a fixed iteration count of 1000 iterations. The
configuration for each run is node dependent. The process layout is 3 dimensional with layout: X processes
in x-direction, where X is the number of nodes, 16 processes in y-direction, and 1 process in z-direction. The
overall problem sizes for strong scaling is set to 1280 ∗ 16 ∗ 100. The problem size for weak scaling is set to
400 ∗ 100 ∗ 100 per node. For the solver -laplace is chosen with pooldist set to 1.

For CoMD version 1.1 is used, as found on the ExMatEx GitHub web page [McPh 13]. The tests use
the pure MPI version of the proxy application. The processor layout is 3 dimensional, with X processes in
x-direction, where X is the number of nodes, 1 processes in y-direction, and 16 process in z-direction. The
problem size for strong scaling is 12 ∗ x,12 ∗ y and 12 ∗ z. For the weak scaling study x is chosen as the
maximum number of nodes for each configuration, giving a total overall problem size of 3072 ∗ 12 ∗ 192. The
maximum iteration count is set to 400 for weak scaling and 800 for strong scaling.

The proxy application NEKBONE is used in version 3.1. NEKBONE is shipped with example configurations
for testing. In this work example3 is used with modified parameters for the scaling tests. In the SIZE
configuration file the simulation is set for 3 dimensions with a polynomial order of 10. The maximum number
of processors is set to 4096. The data.rea file is reconfigured for 3000 elements per processor. The
remaining parameters are configured as given in the default settings of example3. For strong scaling tests the
settings above were used. For the weak scaling tests the elements per processor had to be changed for each
run, to get a total number of elements of 215.

The selected values for problem size and number of elements provide a minimal runtime of 15 s for each
of the proxy applications. This makes the measurements more comparable and more resistant to performance
variation and noise.

4.3 Initial Weak Scaling Test

An initial weak scaling test was performed on up to 32 nodes. This motivates the experimental setup for the
scaling studies. The experiment of Figure 4.1 is split in two individual tests. The left part is executed on the
debug nodes 1 to 16. The right part is executed on the debug nodes 17 to 32. The plots on the left and right
side of the center plot show scaling behavior. The color indicates the power bound used for the measurement,
enforced by RAPL. 50 W are indicated in green, 65 W in blue, 80 W in teal, 95 W in pink and 115 W in
yellow. In the center plot each dot indicates a single measurement. If dots are connected via a line, these
measurements were taken in a multi node test. The multi node runs were clustered according to the node
numbering. This means the two node runs were performed on the sets {[1, 2], [3, 4], [5, 6], ...}, four node runs
on {[1, 2, 3, 4], [5, 6, 7, 8], ...}, etc. On the left and right plots the lines are visual aids to visualize scaling. The
measurements under a power bound of 95 and 115 watts show the same scaling behavior. This is due to the
sustained power consumption of ∼85 W as discussed in Section 3.2

When looking at the performance under a power bound of 50 watts, on the left or right plot, a big variation
is visible. Compared to the other power bounds 50 W shows the strongest variation among all settings. These
results agree with the findings observed by Rountree et al. [RAdS+ 12], showing performance variation is
strongest using low power bounds.

The center plot reveals the different performance of each single node. This again is strongest using 50
watts. In the plot the multi node runs are always bound by the node with the poorest single node performance
participating. Well performing single nodes perform good in a multi node run. An exception to this are the
65 W two node runs on nodes 1 to 16, which experience huge noise levels. However, in general, if a single
node with low performance is included in the execution, the multi node execution is slowed down by this
node. In other words, the runtime always depends on the slowest processor. This motivates ordering the nodes
according to node performance when executing multi node runs.

For each scaling study an initial single node performance test with a reduced problem size is executed under
a 50 W power bound. According to the results of this test the nodes for the scaling study are ordered. This
means for the scaling studies the order is the following: {n, n+1, ...,m−1,m}, with n as the fastest and m the
slowest node according to the 50W performance. This gives the clusterings {[n, n+1], [n+2, n+3], ..., [m−
1,m]} for the two node runs and {[n, n+1, n+2, n+3], [n+4, n+5, n+6, n+7], ..., [m−3,m−2,m−1,m]}
for the four node runs, etc.

To generate reproducible tests and order the nodes, the Moab option #MSUB -l hostlist=<hostlist>
for requesting specific nodes was tested (see: man 1 msub). With this option the same nodes of the cluster
can be requested for each job submission. This turned out to not be a feasible option, since requesting
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specific nodes prolonged the queue time of normally hours or few days to several weeks or months. Using
SLURM, the jobs within the Moab submission can be placed on specific nodes of the partition returned
by Moab. With the initial single node tests of the nodes obtained by Moab, the nodes can be ordered and
clustered. This has to be done for each job submission. The job placement is done using the SLURM option
--nodelist=<nodelist> (see: man 1 srun). Even if the nodes are not the same, the partition of the
machine available for the job gives reproducible results when ordered according to performance. In addition,
jobs can be repeated on the exact same nodes within the Moab submission. This gives the possibility to
compare measurements and show the inhomogeneity of the CPUs performance for each partition.

The presence of noise in the system can be seen by the two node runs under 65 W of nodes 1 to 16 in
Figure 4.1. To mitigate noise present in the system the tests can be repeated. In the scaling studies each test
is repeated 5 times. The tests could not be repeated more often or the total runtime would exceed the 16 hour
limit of cab. With this repetition performance variation on the same processor and node can also be reduced.

When performing scaling studies on many nodes organized in sets of 2n nodes, most of the nodes are idle
for most of the time. When replicating the test across the reserved partition additional measurements can be
taken without prolonging the overall scaling study. For this the tests are organized as follows: 256 single node
tests, running in parallel, followed by 128 two node tests, again running in parallel, followed by 64 four node
tests, etc. This does not only give the advantage of more measurements and less nodes idling, but also gives
the ability to compare performance characteristics of single nodes, as seen in the center plot of Figure 4.1.
With the initial results from Figure 4.1 the setup for the scaling studies is constructed.

4.4 Experimental Setup of Scalability Studies
The objective for this work was to conduct scalability studies under a power constraint. These studies consist of
strong and weak scaling studies for the applications introduced in Chapter 3. The scaling studies are organized
with the following goals:

• Strong scaling and weak scaling
• 3 different proxy applications
• Node count of up to 256 nodes
• 5 power levels from 50 W to 115 W

The exact power levels used are 50, 65, 80, 95 and 115 W. For the strong scaling studies, a fixed total problem
size was selected. For the weak scaling studies, a fixed problem size per processor was selected, as described
above. The number of nodes selected is set as a power of two. For each scaling study a partition of 256
nodes was requested. For weak scaling, experiments from 1 to 256 nodes were performed. As expected strong
scaling tests with low node counts experienced high runtimes or could not be executed because of memory
issues. Thus the node counts for strong scaling starts at 8 and 32 nodes. NEKBONE experienced issues with
strong scaling and only weak scaling results are available.

The exact layout of the scaling studies looks as follows: Each scaling study, AMG2013 strong and weak
scaling, CoMD strong and weak scaling and NEKBONE weak scaling is submitted as a single Moab job. Inside
each Moab job the scaling study follows these steps: Initially, the single node performance of all nodes of the
partition returned by Moab is measured at 50 watts. The results of these measurements are evaluated and an
order is generated, according to which the multi nodes runs are clustered. Each of the tests follows this order,
or in other words multi node runs are always performed on nodes with similar performance. For each power
level measurements are performed at each node count. The measurements for each node count are replicated
across all nodes of the partition to maximize utilization. In addition to that, each of the measurements is
repeated 5 times to be more resistant to system noise. The tests themselves are submitted as SLURM jobs
within the Moab job.

The runs using 5 different power bounds on up to 256 nodes, replicated across the reserved nodes to avoid
idle processors and repeated 5 times, sum up to a total of up to 12775 proxy application measurement per Moab
job submission. Most of these can be run in parallel, but with a minimal runtime of 20 seconds for the fastest
execution and the 16 hour limit, a hard limit for maximum execution had to be set. Since the performance and
runtime of single tests is not precisely predicable the maximum allowable runtime was set to 10 minutes, to
guarantee the 16 hour limit. This was critical to perform the strong scaling tests.

The results of these scaling studies are discussed in the following chapter.
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Figure 4.1: Initial CoMD scaling test on 32 debug nodes. The test is split into two individual tests using nodes 1 to 16 and 17 to 32.
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In this chapter the scaling behavior for the previously described proxy applications is discussed. The focus
here lies on discussing the different behavior in regards to different CPU power settings. The experimental
setup follows the description above.

5.1 Single-node Characteristics

The scaling studies are performed on cab partitions of 256 nodes. Initially the single-node performance under
different power bounds is analyzed. These are shown in Figures 5.1, 5.2 and 5.3. The data points are averaged
across five measurements and the node order is also provided by average values. This order is set according to
the 50 W performance.

When performing a Shapiro-Wilk normality test on the ordered 50 W values it cannot be concluded, that
the performance levels follow a normal distribution. However, this is not true when eliminating the slowest
extreme values. For example, when eliminating the two nodes with the extreme values above 41.5 seconds for
the AMG2013 single-node performance, the Shapiro-Wilk normality test gives a p-value of 0.806. A value
greater than 0.5 allows the assumption of normality. With this information it cannot be assumed that the
performance of the nodes follows a normal distribution.

When measuring performance at a power cap above the maximum power drawn by the application nearly no
variation is observed. This is the case for AMG2013 at 115 W, CoMD at 95 W and 115 W and NEKBONE at
115 W. As seen in Chapter 3, AMG2013 uses ∼103 W, CoMD uses ∼85 W and NEKBONE uses ∼103.5 W.
While above these values, the performance variation is not induced by restricted power, but by noise. This is
the case since performance variation is only visible while operating at lower power levels than consumed by
the application. The notion of noise is any performance variation induced by changes in the environment not
under control of the user. This can be noise generated by the operating system, or on multi-node runs, network
traffic slowing down communication, among others. In general noise levels are low, but can occasionally have
high impact on job executions.

The runs at lower power caps see performance variation introduced by CPU manufacturing variation. Due to
variations in the CPU manufacturing process not every CPU has the same performance to power consumption
curve [RAdS+ 12]. The runs at higher power bounds experience a lower performance variation. As seen
in Figure 5.1,Figure 5.1 and Figure 5.1,some measurements experience not only performance variation by
manufacturing variability, but also by noise. At 65 W the performance still follows the general trend of lower
execution time on the left to higher execution time on the right, but this is only a trend and not a strict order
anymore. This is very obvious with NEKBONE, where high noise levels could be observed especially with a
power cap of 65 W.

The noise levels observed for the single-node runs are relatively small and the variation can be attributed
to performance variation. This is emphasized due to the small variation levels when looking at performance
variation of the same node compared to variation across all nodes. The maximum performance variation
across all nodes is calculated from the averaged values of the single-node results. The maximum performance
variation observed on a single node for AMG2013 is 0.017 seconds. The maximum performance variation
observed across all nodes for AMG2013 is 0.118 seconds. This indicates that noise levels are small, otherwise
these variation values should be similar. For CoMD the maximum performance variation observed on a single
node is 0.037 seconds. While a value of 0.150 seconds is observed for maximum performance variation across
all nodes.

The measurements for NEKBONE are very noisy. This can be seen in Figure 5.3. The maximum single-node
variation observed is at 65 W. One of the 5 iterations encountered high noise levels. This impacts the
measurement and a variance of 2.028 seconds is observed at 65 W on a single node. When removing the
noisy measurement, the maximum single-node variation drops down to 0.015 s. The maximum performance
variation across all nodes is 0.0803 seconds. This does not change, even when including the averaged
performance values of the noisy run.

23



5 Scaling Studies

30
32

34
36

38
40

42

cab Nodes (Ordered by Speed [1,2,...,n−1,n] according to 50W single node performance)

tim
e[

s]

1 32 64 96 128 160 192 224 256

●
●●

●

●

●

●
●

● ●

●

●
●

●

●

●
●

●

●

●
●●

● ●
●

●

●
●

● ●

●

●

●

●
●

●

●

●

●

●
●

●
● ●

●

●
●

● ●

●
●

●
●

●

●

●

●● ●

●

●

●

● ●

●
●

●

●●

●

●

●
●

●
● ●

● ●

●●

●
● ●

●
●

● ●

● ●
●

●

● ●

●● ●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

● ●

● ●●
●

●●
●

●● ●

●

●
●●●

●

●●

●

●

●
●

●

●

● ● ●
●

●
●

●
●

●

●

●

●

● ●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

● ●

●

●●

●

●

●

●

●
●

●
●

●
●

●
●●

●

●

●
●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●
●

● ●●
●

●
●

●

●
●

●

●
●

●

●

● ●

●
●

●
●

●
● ●

●

●●

●

●

●

●

●

●
●

●
●

●

●●

● ●●

●

●
●

●
●

● ●

●

●

●
●

●

●●
● ●●

●●

● ●
●

●
● ● ● ●

●

●
●

● ●

●

● ●

●

● ●
●

● ●
●

●●
●

●

●
●

● ●

●

●

●

●
● ●

●

●

●

●
●

●
●● ●

●
●

●●●

●
● ●

●

● ●●●
●

●
●

●
●

●● ●
●

●
● ●

●● ●
●

●

●

● ●
●

●

●

●

●
●

●
●

●

●

●

●
●

●
●

● ●●
● ●

●
●

●
● ●

●●●
●

●
●

●
●

●●●

●

●●
●●

●
●

●
●

● ● ●
● ●●

●
●

●

●

●
●● ●●

●

●

●

●

●

●
●

●

●

●

●●

●

●

● ●●
●

●

● ●
●

●
●

●

●

●

●

●
●

●
● ●

● ●
●●

●

●

●
● ●

●

●

●

●

●

●

●
●

● ●●
●

●

●

●● ●
● ●

●

●

●●
●

●

●
●

●
●

● ●

●
●

●
●

●●
●

●

●●
●

●

●

●

●

●
●

●
●

●

●
●

● ●●

●

●
●

● ●
● ●

●

●

●
●

●

●●
●

●
●

●●
● ●

● ●
● ● ● ●

●

●
●

● ●

●

● ●

●
● ●

●

● ●●
●●

●

●

●
●

● ●

●
●●

●
● ● ●

●

●

●
● ●

●● ●

●
● ●

●●

●
● ● ●

●

●●●

●
●●●

● ●
● ●

●

●
●

●
●● ●

●
●

●

● ●
●

●

●
●

●
●

● ●

●

●
●

●
●

●
●

● ●●
● ● ●●

●
●

●
●●● ●●

●
● ●

●●●
●

●● ●● ●
●

● ●
● ● ●

● ●●

●●
●

●

● ●● ●●

●

●
●

●

●

●

●
●

●

●

●●

●
●

● ●●●

●

● ●
● ●

●
●

●

●

●

●
●●

● ● ●
●

●●

●

●

●● ●
●

●

●
●

●

●

●●

● ●
●

●
●

●

●● ●
● ●

●
●

●●
● ●

● ●

●
● ● ●

●
●

● ●
●●

●

●

●●
●

●

●

●
●

●
●

● ●
●

●
●

●
●●

●
●● ● ●● ● ●●

●●
● ●●● ●●●● ● ●● ●● ● ● ●

●
●●● ●

●
● ●

●
● ●

●
● ●● ●●●

●
● ● ● ●

● ●● ●● ● ●● ●
● ● ● ●● ●

●● ●
●●

● ● ● ●
●

●●●
●

●●●
● ●● ●●

●● ●●● ● ●●
●

● ●
● ●●

●
●

●
● ●

●
●● ●●● ●●

●
● ● ● ●● ●● ●●●● ●● ●● ● ●●●

●
●●

●● ● ●● ●● ● ●● ●●
●●●●

● ●● ●●
●

● ●
●

●
●

● ●
● ●●●

● ●
● ●●●●

● ●● ●
●

●● ●
●

● ●●
● ● ● ●●●

●
●●● ●●●

● ●●
●

●●
● ●●

●●
●

●● ●● ●
●● ●● ● ●● ●

●● ● ●
●●● ●●●

●

●
●●●

●
●

● ●
●●

● ●● ●●
●

●●● ●● ● ●● ● ●● ●●● ●●● ●●●● ● ●● ●● ● ● ●● ●●● ● ●● ● ●● ● ●● ●● ●●● ●● ● ● ●● ●● ●● ● ●● ●● ● ● ●● ●●● ●●●● ● ● ● ● ●●● ● ●●● ● ●● ●● ●● ●●● ● ●● ●● ●● ●●● ●● ● ●● ●● ●●● ●● ●● ● ● ●● ●● ●●●● ●● ●● ● ●●● ●●● ●● ● ●● ●● ● ●● ●● ●●●● ● ●● ●● ●● ● ●● ●● ●● ●●● ● ●● ●●●● ● ●● ●●●● ●● ● ●●● ● ● ●●●● ●●● ●●● ● ●● ●●●● ●● ●● ●●● ●● ● ●● ●● ● ●● ● ●● ● ● ●●● ●●● ●● ●●● ● ●● ●●● ● ●● ●●

−
−

−
−

−50 W
65 W

80 W
95 W

115 W

Figure 5.1: AMG2013 single-node performance variation. Average performance over five measurements.
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Figure 5.2: CoMD single-node performance variation. Average performance over five measurements.
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Figure 5.3: NEKBONE single-node performance variation. Average performance over five measurements.

With the single-node variation discussed for the three proxy applications, the next step is to look at
multi-node runs and the weak and strong scaling studies.

5.2 Weak Scaling

This section discusses the weak scaling studies for the multi-node runs.
Figures 5.4, 5.5 and 5.6 show a simple weak scaling plot of the proxy applications. Note that the scale of

the x-axis is log2. The color code is kept consistent throughout this work, with 50 W being indicated in green,
65 W in blue, 80 W in teal, 95 W in pink and 115 W in yellow. The yellow line always shows the baseline
performance of the proxy application, since 115 W equals no power bound. The general scaling trends of all
proxy applications show similar behavior, regardless of a power bound applied. However some differences in
scaling can be observed regarding the different power levels.

The nodes contained within the partition returned by Moab for the measurements are spread across the
cab system. This gives other applications running on the system the possibility to interfere by stressing the
interconnect. This means that some measurements are noisy despite working with average values across 5
different runs. For the AMG2013 weak scaling run the 4 node measurement at 50 W, as well as the 32 node
measurement at 95 appear to be noisy. For CoMD the 32 node run at 65 W and the 128 node run at 95 W are
noisy runs. Regarding NEKBONE the 64 node run at 50 W as well as the 128 node run at 80 W are noisy. All
measured values are plotted as gray dots, the averages are plotted in color. For the rest of the measurements,
averaging across 5 runs appears to return good values. The general scaling behavior does not change with
different power levels, however the slowdown introduced by the power bounds is very noticeable.

A perfectly weak scaling application would show a horizontal line. This is because every processor always
has the same amount of work, no matter how many processors are present. The increase in runtime is
introduced by an increase in communication per node.

5.2.1 AMG2013

For the weak scaling studies, AMG2013 shows a strong increase in runtime when moving from 1 to 4 nodes.
Beyond 4 nodes the steepness of the curve goes down and the increase in runtime appears nearly linear. With
the logarithmic x-axis, this growth is logarithmic itself.

25



5 Scaling Studies

#Nodes

tim
e 

[s
]

1 2 4 8 16 32 64 128 256

30
35

40
45

50
55

60
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●

●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●

●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●
●●●●●●●●
●●●●
●●●●●●●●
●●●●
●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●
●●●●
●●●●●●●●
●●●●
●●●●●●●●●●●●
●●●●
●●●●
●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●
●●●●●●●●
●●●●

●●●●

●●●●●●●●
●●●●●●●●●●●●
●●●●
●●●●●●●●●●●●●●●●
●●●●
●●●●●●●●●●●●
●●●●
●●●●
●●●●
●●●●

●●●●

●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●
●●

●●

●
●●
●
●●
●●
●
●●●●●●
●
●

●
●
●
●
●
●●
●
●
●●
●●●●
●
●
●●●
●
●●●●
●●●●
●
●
●●●●●
●
●
●●●
●
●●●●●
●●
●●●●●●●

●

●

●
●●●
●●●●

●●

●
●

●

●●●
●

●●
●●●

●

●
●
●
●
●●●●
●

●

●
●●●
●

●
●
●
●
●
●●●●●
●●
●●●●●
●●●
●●●
●

●
●●
●●●
●
●●

●
●
●●

●
●●●●

●

●
●●●●●
●
●
●●

●

●●

●

●

●
●●
●
●
●

●●
●

●●
●●

●
●●

●●
●●●●
●

●●●●●
●
●
●●

●

●
●

●
●
●
●●●●●

●

●●

●
●●
●●

●●●●
●●●●
●
●●
●●●

●
●
●

●
●●
●●●●●●
●
●●●●
●
●
●●
●
●
●

●●●●●●
●
●
●
●

●

●
●

●●
●●
●●●

●
●●
●●
●●

●

●●●●
●

●●
●●
●●
●
●●●
●●●

●
●
●
●

●

●●●●
●

●
●
●
●

●
●●●●●
●
●
●●●
●●●
●●
●●●●●●●
●
●
●●●●
●

●
●

●
●●

●
●●
●●

●
●
●
●
●●●●●
●●●●
●

●

●●
●●●
●●
●

●
●
●
●
●
●●
●●
●
●●●
●
●●●
●●●●●
●●
●
●●
●
●
●
●
●

●
●

●
●
●
●●
●●●●
●●
●●
●
●
●
●●
●●
●

●

●●

●

●
●
●●
●

●●●●
●●

●
●●

●

●●●●

●●●●

●

●

●●

●

●●
●●●●●●

●

●●●
●●●●●●

●
●
●●
●●●
●●
●●●●
●●●

●
●●●●
●●●●

●
●●●
●●
●●
●

●●●●●
●●●
●

●●

●

●
●●●●●●

●

●
●
●
●
●
●
●●

●
●
●●

●●●●
●●
●●●

●●●
●●
●

●●
●●
●

●●
●
●
●
●●
●
●●●●●●

●

●●
●
●●
●●●
●
●●●
●●
●

●
●●
●
●
●●●
●
●●●●

●

●
●

●

●●●
●●
●
●
●●●
●
●
●●
●●

●●●●

●
●
●●
●
●
●
●
●
●
●

●

●●
●
●
●
●●
●

●

●●●●

●●
●
●●
●
●●●●
●
●●●
●●●●
●●●
●
●

●

●
●●
●

●●
●
●

●

●●

●

●

●●●
●
●
●
●

●
●
●
●
●
●
●
●

●●●●

●

●

●●
●
●●

●
●●
●●●●●●
●●●●●●
●●●●●●●●●●
●●
●
●

●●●●
●
●

●

●●
●●
●●●
●●●
●●●●
●●

●●●●●
●
●
●
●●●●●
●●●●●
●
●
●●
●
●
●
●
●
●
●
●●
●●
●●●
●●●●
●●●●●●
●●
●
●

●
●●
●
●
●●
●
●●●●

●

●●
●
●●
●

●
●
●
●●

●
●
●●●
●●

●

●
●

●

●●●●
●
●●
●
●●
●
●●
●
●●●

●

●●●
●
●●●●●
●●●

●
●●●

●
●●●
●●
●
●
●
●
●●●
●●
●
●
●
●

●
●●●

●

●●
●

●
●
●

●

●
●●●
●●
●●
●

●
●●
●
●●

●

●
●●●
●●

●
●●●●
●
●
●●●●
●●
●
●
●

●

●
●

●
●
●
●●●

●

●
●●
●

●

●
●●
●

●
●●●●
●●

●●●
●●
●
●●

●
●●
●

●

●
●

●

●●
●
●

●
●●●●●●
●
●
●

●

●
●
●
●
●●
●●
●●
●

●

●●●
●●●
●

●
●
●

●
●●

●●
●
●
●●
●●●

●●●
●●
●●

●

●
●●●●
●
●
●

●
●●
●●
●
●

●
●
●
●
●
●

●●
●
●
●

●●●●●●●●●
●
●

●
●●●
●●
●●●●
●●
●
●
●●●
●●
●●
●
●

●●
●
●
●
●
●
●●
●●●
●
●●
●●
●●

●

●●
●●
●

●●

●●
●●●●
●
●
●
●

●
●●
●
●
●
●

●

●●●●

●●●●
●●●
●●●
●
●
●
●
●

●
●
●●
●
●●●

●●
●

●●
●

●

●

●
●

●

●●
●

●
●
●●●●

●●●
●●
●
●

●
●
●●
●

●

●

●
●
●

●

●
●
●●
●
●
●
●
●●●●
●
●

●
●●
●●
●

●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●
●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●
●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●
●●●●

●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●
●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●
●●
●●
●●

●●
●●●●●●●
●
●●
●●●●●●●
●●●●●●●●●●●●●●
●●●●
●●●●●●●●●●●
●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●
●●●
●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●
●●
●
●●●●●
●●●●●●●●●●●●●●●●●●●●●
●●●●●
●●●●●●●●●●●
●●●●●●●
●●●●●●●●
●●●●●●●●●●●●●●●●●●●●
●
●
●
●●
●●●●●●●●●●
●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●
●●
●
●●
●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●

●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●
●●●●
●●●●
●●●●
●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●
●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●
●●
●●●●●●●●●●●●●●
●●
●●
●●●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●
●●
●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●
●●
●●●●

●●
●●●●●●●
●
●●
●●●●●●●●●●●●●●●●●●●●●
●●●●
●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●
●
●●●●●
●
●●●●
●●●●●●●●●●
●●●●●
●●●●●●●●●●●●●
●●
●
●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●
●
●●●
●●
●●●●●
●●●●●●●●●●●●●●●
●●●●
●●●●●●●●●
●
●
●
●●
●●●●●●●●
●●
●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●
●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

−
−

−
−

−50 W
65 W

80 W
95 W

115 W

Figure 5.4: AMG2013 weak scaling study. Average performance over five measurements. Each measurement
is replicated to utilize all 256 nodes. Dashed lines indicate the simple linear regression curve.

The average runtime for the fastest run at the maximum power is 30.267 seconds. The average runtime for
the slowest run takes up to 44.603 seconds at maximum power. At 95 W the time difference is less than a
second. Starting at 80 W the runtime difference goes from an average low of 31.681 s to an average high of
48.785 seconds. The strongest slowdown is at its maximum at 50 watts with a minimal runtime for a single
node averaged at 40.378 seconds and a maximal runtime with an average of 63.026 seconds at 256 nodes.

The maximum variance of the performance increases when lowering power. At 115 W the maximum
variance is at only 0.022, At 95 W and 80 W the maximum variance is still below 0.1 with 0.095 and 0.099. At
65 W the variance rises to 0.214 and reaches 0.586 at 50 W. No correlation between variance and node count
could be found.

When fitting a logarithmic regression curve, plotted as a dashed line in Figure 5.4, the difference in the slope
of the curve is very noticeable for different power levels. For the regression function a+ b ∗ log2(x) the value
for b at 50 watts is 2.4. For 115 W the slope b is flatter with a value of 1.5. When looking at values above
80 W, difference in the y-intercept is less than 1.5 seconds with the slope b staying below 1.8.

As seen in Section 3.1 AMG2013 consumes 103 watts. Thus the performance measurement under a power
restriction of 95 W already shows a slight different behavior.

5.2.2 CoMD

CoMD shows a smoother scaling curve with no abrupt changes. The plot of Figure 5.5 shows CoMD weak
scaling at different power bounds. CoMD shows a good scaling behavior, which is better than linear for all
power setting (Note: log2 x-axis).

The fastest average runtime at maximum power is 19.423 seconds. The slowest average runtime at 115 W
reaches 26.371 seconds. At 50 W the runtime is minimal with an average of 28.271 seconds and maximal
with an average of 39.901 seconds. As seen in all weak scaling studies performed low node counts always
experience faster execution, even though the same amount of work is done per node.

With the power consumption of CoMD of ∼85 W as seen in Section 3.2 both 115 W and 95 W show the
same behavior. The noise observed at 128 and 256 nodes is an exception to this. However already at 80 W,
only 5 watts below the maximum power the application consumes, the execution times slows down by more
than 1.5 seconds.

The variance is lowest at 115 W with a maximum variance of 0.063. 50 W, 65 W and 80 W, show increased
variance levels with 0.271, 0.288 and 0.215. The variance is highest at 65 W and no correlation between node
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5.2 Weak Scaling
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Figure 5.5: CoMD weak scaling study. Average performance over five measurements. Each measurement is
replicated to utilize all 256 nodes. Dashed lines indicate the simple linear regression curve.
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Figure 5.6: NEKBONE weak scaling study. Average performance over five measurements. Each measurement
is replicated to utilize all 256 nodes. Dashed lines indicate the simple linear regression curve.
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5 Scaling Studies

count and performance variance could be observed.
When fitting a logarithmic regression model, the regression curve has the following parameters: The

interesting part of the regression function a + b ∗ log2(x) for the different power levels is the slope b. For
50 W b equals 1.398, for 65 W b equals 1.064, for 80 W b equals 0.884, for 95 W b equals 0.870 and for
115 W b equals 0.877. The difference in y-intercept between 65 W and 80 W is more than 2 seconds and
increases to more than 4.5 seconds when looking at the difference between 50 W and 65 W.

5.2.3 NEKBONE

NEKBONE shows a very similar scaling behavior to CoMD’s scaling behavior, as seen in Figure 5.6. The
maximum power consumption of NEKBONE is ∼103 W as seen in Section 3.3. This already shows one of
the differences between NEKBONE’s and CoMD’s behaviors. For NEKBONE all power settings except for
the uncapped at 115 W experience slowdowns introduced by the power bound.

The fastest runtime at maximum power takes on average 21.811 s. The slowest runtime at maximum power
is on average 26.079 s. At 50 W the fastest run reaches only a mean of 29.681 s and the slowest run takes
37.559, on average.

The variance is relatively low for power levels above 65 W. Except for a variance of 0.267 at 50 W, the
variance is always below 0.081 and is minimal at 115 W with a value of 0.011. The variance does not strictly
decrease when lowering the power level. Again no correlation between node count and variance could be
observed.

The logarithmic regression model shows the following parameters for the regression function a+b∗log2(x):
The slope nearly doubles when moving from unbound at 115 W to 50 W. The values for b are 0.468 at 50 W,
0.486 at 65 W, 0.598 at 80 W, 0.678 at 95 W and 0.938 at 115 W. The y-intercept increases from a = 21.811 s
at 115 W, to 22.414 s at 95 W, 23.628 s at 80 W, 25.806 s at 65 W and 29.681 at 50 W.

5.3 Strong Scaling

This section discusses the strong scaling studies for the multi-node runs.
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Figure 5.7: AMG2013 strong scaling study. Average performance over five measurements. Each measurement
is replicated to utilize all 256 nodes.
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Figure 5.8: CoMD strong scaling study. Average performance over five measurements. Each measurement is
replicated to utilize all 256 nodes. Detailed view for 64, 128 and 256 nodes.

Figures 5.7 and 5.8 show a simple weak scaling plot of the proxy applications. Figure 5.8 includes a detailed
view of the node counts 64, 128 and 256. Again the scale of the x-axis is log2, and the color code is green for
50 W, blue for 65 W, teal for 80 W, pink for 95 W and yellow representing 115 W.

The yellow line again represents the baseline performance of the proxy application without a power cap. In
other words the CPU can consume up to 115 W of power.

A perfectly strong scaling application would show runtime divided in half when doubling the number of
processors. For both AMG2013 and CoMD, the scaling behavior degrades when applying lower power caps.
However both show good strong scaling behavior, under all power bounds.

5.3.1 AMG2013

The general scaling trend for AMG2013 is not affected by enforcing a power cap. For AMG2013 the following
runtime cuts are observed when doubling the number of processors: When moving from 32 to 64 nodes, only
51.3% are needed at 115 W. At 50 W the scaling behavior is still good with 54.4%. When moving from 64 to
128 nodes at 115 W 54.0% of the execution time is needed. At 50 W the scaling behavior observed is a runtime
cut down to 51.3%. Finally when moving from 128 to 256 nodes at 115 W 66.9% of the time is needed. At
50 W the runtime is only decreased by 78.6%.

At 50 W the runtime decreases from 578.34 s at 32 nodes to 126.96 s at 256 nodes, with an ideal target
value of 72.29 seconds at 256. At 115 W the runtime decreases from 408.62 s at 32 nodes to 75.77 s at 256
nodes, 51.08 seconds at 256 would mean perfect scaling.

Even though the scaling behavior follows the same trend, the scaling behavior degrades faster at lower node
counts with a power cap enforced. Most noticeable is the flat performance loss of applying a power cap, which
is independent of the node count, as seen in the single-node performance discussion above.

5.3.2 CoMD

When looking at Figure 5.8, a very similar scaling behavior can be observed.
CoMD shows the following runtime cuts when doubling the number of processors: At 115 W the runtime

observed when moving from 8 to 16 nodes is perfect with runtime decrease of 49.9%. At 50 W the scaling
values are still very good with 51.4%. When moving from 16 to 32 nodes the runtime decrease is again near
perfect with 50.7% at 115 W. Similarly scaling is achieved at 50 W with a runtime decrease of 50.5%. Moving
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5 Scaling Studies

from 32 to 64 nodes, at 115 W the runtime decreases to 52.1%, at 50 W the decrease is still good with a value
of 52.7%. The step 64 nodes to 128 nodes shows a runtime decease of 54.4% at 115 W and 55.3% at 50 W.
The last step from 128 to 256 shows the worst runtime cut of 57.2% at 115 W and 57.3%.

A noticeable observation is the scaling behavior is nearly equal, with differences of less than 1.5%. This
also means that the relative performance loss observed on a single node is still valid for runs on multiple nodes.
The difference in strong scaling behavior under a power bound for AMG2013 and CoMD also show that this
is not a general statement but depends on the application.

When comparing the absolute values, the runtime decrease at 50 W moves from 451.65 s at 8 nodes to
19.57 s at 256 nodes. The ideal value at 256 nodes is 14.11 seconds. At 115 W the runtime drops from
318.91 s to 13.05 s, with an ideal value of 9.97 seconds, assuming perfect strong scaling.

5.4 Node Performance Variation
When studying the single-node behavior, performance variation can be seen as discussed in the introduction
of Chapter 5. This effect can again be observed when comparing multi-node measurements. The ordering and
clustering of the nodes helped when comparing this node performance variation. As discussed in Section 4.4
the experiments are replicated to perform measurements on the whole partition requested for the test, consisting
of 256 nodes. The performance variation of the multi-node runs executed on the different nodes reflects the
single-node variation results.

All proxy applications show similar multi-node scaling variance. In this section the observed variation is
discussed by the example of AMG2013, as seen in Figure 5.9. For illustrative purposes only th 50 W result is
shown in the plot. This power cap shows the variation most clearly and distinguishable. The effect however is
present in all measurements with power caps below the maximum power consumption of the application.

In Figure 5.9 the node IDs are ordered according to the 50 W single-node performance. The multi-node
runs are clustered according to performance as introduced in Section 4.3. The arrangement of the single nodes
thus follow a strict order.

The interesting observation here is, that the multi-node runs, where fast nodes are clustered with fast nodes
and slow nodes with slow ones, follow a similar order when looking at the performance. The fast multi-node
runs are located on the left side and performance degrades for runs located to the right. Because of noise in
the interconnect and the fact that the nodes are spread across the machine this order is not strict anymore.

The nodes of the fastest two single-node measurements used for a two node measurement results in the
fastest two node measurements. This seems obvious, however without power restrictions this effect is not
noticeable in terms of performance. This general observation of combining fast nodes to a multi-node run
resulting in a fast multi-node run is also true for slow nodes resulting in a slow execution.

With this observation a second measurement was conducted with a different node order. For both
measurements the exact same set of nodes is used. In Figure 5.10 the nodes are ordered by alternating
performance according to the 50 W single-node performance of Figure 5.9. The order for this scaling study
is {n,m, n+ 1,m− 1, ..., n+m/2,m/2}, where n has the best performance and m the worst performance,
according to the 50W single-node performance of the ordered run. In other words the first node of Figure 5.10
has the best performance, the second node has the worst performance, the third node has the second best
performance, the fourth node the second worst performance, etc. The order is not strict since this second
measurement is ordered according to the previous measurement of Figure 5.9, using the same node set to
achieve better comparability.

When performing multi-node measurements using this order for selecting nodes it can be observed that slow
nodes hinder fast nodes. The performance of the multi-node runs in Figure 5.10 appear to have a reverse order
of the previous results of Figure 5.9. The multi-node runtimes decrease from left to right. Again this decrease
is a trend and not strict due to noise. This directly implies that the runtime of a multi-node application is
always restricted by the slowest node. With this observation the sets of nodes participating in a multi-node run
should have similar performance in a power restricted environment.

Without power restriction there is no or a negligibly low performance variation, as seen in the introduction of
Chapter 5 and thus this is of no real concern. In a power restricted environment this waste of performance can
be large when performing measurements on nodes with large performance difference. As mentioned earlier
this effect could be observed in any test with a power cap lower than the average power consumption of the
proxy application. For large scale runs the likelihood of having large variation increases with the number of
nodes used for the program execution. This variation is at a maximum when using the whole HPC system.
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Figure 5.9: AMG2013 weak scaling study, ordered by 50 W single-node performance. Each node is
participating in one measurement for each node count. Lines indicate multi-node measurements
(see index right). Values are averaged over five measurements.
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Figure 5.10: Second AMG2013 weak scaling study, ordered by alternating slow and fast nodes of 50 W
single-node performance of Figure 5.9. Each node is participating in one measurement for each
node count. Lines indicate multi-node measurements (see index right). Values are averaged over
five measurements.

31





6 The Impact of Power and Using Power to
Unify Performance Variability

The GREMLINs Framework gives the opportunity to study performance of an emulated future HPC system.
This is achieved by introducing artificial performance restrictions to mimic the performance bottlenecks of
this anticipated machine. With the focus of introducing power restrictions to the HPC system cab at LLNL
for scalability studies this work tries to help understand the performance tradeoff of operating at lower power
settings.

When not applying a power bound the performance variability may not be observable as time to completion.
The manufacturing variability is expressed as varying power consumption for each CPU while achieving
comparable performance. When looking at HPC installations and their inability to consume all power procured
for the system, as discussed in Chapter 1, a way to control power consumption and maximum power
consumption under restricted conditions may give the ability to operate HPC systems more power efficient.
This Chapter discusses how to use power bounds to achieve more power efficient system operations.

The weak scaling results in Section 5.2 have two obvious results: First, the strongest impact of running
at a lower power bound is the lower CPU performance. This difference depends on the power behavior of
each individual CPU and is application dependent. Second, the performance degradation of running under a
power bound at larger scales is not deteriorating much faster when running under a power bound, compared
to running without power restriction. However the difference of running unbounded to running under a power
bound is noticeable.

Using these results users can optimize the number of resources used for achieving a specific runtime. For
a specific application, given a problem size, the independent variables number of nodes, number of cores and
power bound can be optimized for the dependent variable runtime. This process requires fine tuning to use the
available resources with maximum efficiency while optimizing runtime. Constructing a functional model may
not be easy, because of the performance variation observed in the individual CPUs. In addition to that models
are application and problem size specific. Finding a general model may be hard or impractical. A first step is
a single node power optimization since scaling up does not impact power characteristics in a severe way, as
seen above.

Regarding strong scaling behavior Figures 5.7 and 5.8 show an interesting behavior. The scaling behavior,
similar to weak scaling, is not impacted by the power bound itself in a severe way. Under the assumption
that the power consumption of other components can be neglected, running the same problem size at 50 W
power using double the processors is faster and more power saving than operating the original processor count
without a power bound. The assumption made is very strong, thus the impact and power consumption of
components other than the CPU has to be studied.

In addition to studying the power consumption and behavior of other components it is also interesting
how their power consumption can be influenced. Applying power bounds to the memory subsystem and
interconnects is a first approach. For studies like these artificial benchmarks stressing CPU, Memory and
Interconnect exclusively should be studied first. As of the knowledge of the author, current interconnect
technology does not support different power settings. For the memory subsystem power management exists
via DVFS [HFG+ 11]. Howard et al. measured memory power in servers at an average of 19% [HFG+ 11].
Altering memory power settings is not included in the GREMLINs framework, yet, even though memory
power is a big contributor for system power consumption.

Running a system at lower power gives the ability to install and operate more components than the amount
able to run at full power. The notion of overprovisioning reflects this idea [FeFr 04, PLR+ 13]. This work and
the strong scaling studies are a step towards showing the feasibility of overprovisioning. Overprovisioning
again includes an optimization problem. Open questions regarding overprovisioning are minimal power
consumption of idle and low power states and how many nodes can be added and powered up in low energy
states. For full system power adaption, studying the impact and correlation of system components’ power
behavior plays an important role, too.
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6 The Impact of Power and Using Power to Unify Performance Variability

The performance variability of single node runs is well studied and known [RAdS+ 12]. The variability is
introduced as a result of manufacturing variation. This work gives an insight of multi node power behavior. An
interesting insight here is, that slow and poorly performing nodes impact time to completion. Figures 5.9 and
5.10 show the variability using the same settings with different node counts, in a strong scaling study. Multi
node runs that include nodes with low performance always perform worse than runs excluding low performing
nodes. With larger runs slow nodes cannot be excluded because of a finite number of nodes available in the
system. A technique to homogenize the execution times of the participating nodes is power balancing. The
approach to power balancing is as follows: When operating under a power bound, the faster nodes are provided
less power to amortize runtime. This extra power saved, can be either used to speed up the slow nodes, given
that the node can consume the extra power, or to power additional nodes using the power surplus. These
power balancing considerations include steps to analysis the optimum of power redistribution versus adding
new nodes.

Performance variability is observed to be higher using low power bounds. The feasibility of this can be
studied in a power bounded environment with low power settings.

With the wide popularity of accelerators power management regarding these kinds of resources is getting of
interest, too. NVIDIA’s CUDA supports power management and the option to set power limits on supported
devices of from the Kepler family [CUDA 12]. As of the knowledge of the author, Intel’s Xeon Phi accelerators
do not support the RAPL features introduced in the Sandy Bridge microarchitecture, yet. With these
technologies the impact on transfer rate between accelerator and host under a power bound are of particular
interest.

Development and research using power bounds do not necessarily result in faster execution times, but help
to understand power consumption in a HPC environment, with the goal of achieving more power efficiency.
With an anticipated power consumption of ∼20 MW wasting power is irresponsible. Thus, understanding
systems, software and application behavior is paramount.
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7 Related Work
The GREMLINs Framework is a first of its kind, combining different methods to emulate hardware restrictions.
The hardware restrictions themselves are used in other works and different approaches, adaptations and
versions of these exist. For the Memory GREMLINs alternative tools are the two works of
Cache Pirating [ENBSH 11] and Bandwidth Bandits [ENBSH 12]. These approaches reach a similar goal,
but do not provide a holistic framework like the GREMLINs Framework does.

To influence power consumption the usage of DVFS is widely studied. Only few of these works deal with a
HPC environment. Etinski et al. [ECLV 12] uses DVFS to analyze execution time reduction using the β-metric.
The β-metric compares application slowdown to CPU slowdown, where β== 0 means that the execution time
is insensitive to frequency scaling. The range of β is [0, 1]. This metric directly depends on the frequency used
for the execution. The GREMLINs use RAPL to control power usage. The frequency is thus not set directly
and the β-metric is not applicable when using this technique. Etinski et al. analyze the impact of frequency
scaling on up to 712 processors, while analyzing the NAS parallel benchmarks. The results show a decrease
in β when either increasing number of processors or increasing frequency. The frequency change from low
to high frequency has a small impact on β. The change in number of processors shows a bigger impact on
β, however stating that only minor impact was observed for the SP benchmark, which observes good scaling
behavior.

The proxy applications studied in the work at hand are optimized for parallel execution with good scaling
behavior. Thus the results of the NAS benchmark SP and the proxy applications studied here are closely
related. The impact of direct power reduction using RAPL does not decrease performance severely when
scaling to up to 4096 processors, or 256 nodes. The frequency is set indirectly via the running average power
limit, which throttles the CPU frequency, if the average power consumption surpasses the set limit. Both
approaches show a similar result for the applications showing good scaling behavior since the power clamp
and frequency reduction respectively impacts performance while in the compute kernel. The impact on the
communication phase is only minor.

The trade-off analysis used for the work of Etinski et al. show that frequency scaling is not a guaranteed
way to save energy. This is the case when CPU power reduction of over 100% is required, as described by the
group. When comparing frequency needs to power needs of applications, the power value can be directly read
from the power meters. Understanding frequency needs while fully utilizing all resources is an indirection to
this approach and harder from a programmers perspective. Application requirements are not obvious and thus
DVFS is not used in the work at hand. As shown in Chapter 3, only a custom, artificial workload can achieve
full processor load, which consumes all power provided to the CPU. In other words, the energy that is not used
by the application can always be saved without impacting performance, under the condition that this power
requirement is known. Using RAPL this maximum power consumption of the application could theoretically
be set as an upper limit.

Rountree et al. [RAdS+ 12] explores the possibilities of RAPL and shows the impact on the NAS Parallel
Benchmark MG via experimental results. The arguments given for using RAPL over DVFS impacted the
choice of technology for the GREMLINs Framework. His team studied the processor performance using
different power bounds and is the first to study and apply this technique in a high-performance computing
domain. The work characterizes a large selection of the same processors, pointing out the significance of
processor variation within a specific CPU model. The work does not take multi node measurements into
account, to get a clear picture of the impact of power bounds on individual processors. All measurements are
performed using the NAS Parallel Benchmarks with problem size C and 8 MPI processes.

Scaling and prediction models exist for some of the proxy applications studied, like AMG2013 and
NEKBONE. Rosas et al. developed a prediction model using small scale measurements to extrapolate
efficiency to large core counts [RJL 14]. The prediction is studied and verified using analytical models,
and architectural simulation. To verify the results traces using large core counts are used. The approach
used is analytic modeling and architectural simulation. These results do not focus on power consumption
of CPUs and have a focus on pure scaling prediction using current hardware. An extension is provided to
cope with increasing noise in the system. The GREMLINs framework chooses the approach of emulation. In
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combination, the analytical model, the simulation and the emulation can provide a very precise prediction of
future systems. For exact prognosis the analysis of all resources and their respective behavior is necessary.

The key contribution of this work to the aforementioned are two distinguishable aspects:

• The GREMLINs Framework provides an easily extensible emulation tool for hardware restrictions on
current high performance computing systems.

• The Framework is applied to study scaling behavior in a power restricted environment.

The results show different aspects and potential use cases of power limits. The main goal is reducing wasted
power on large scale systems. This work gives an initial study of how power limits affect application behavior
at scale and provides a framework to explore and exploit resource usage. The framework generalizes this
and provides the opportunity of extension to different resources and study combined resource restrictions in a
unified fashion.
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8 Conclusion

The goal of the GREMLINs framework, of providing a holistic emulation tool for studying future high
performance computing resources, is a very ambitious goal. The work at hand gives an introduction to the
first release of the tool and shows its applicability in a HPC environment. The results gained are insights in
power behavior and application performance at scale. The current state of the framework provides a easily
extensible tool for all users. This gives the possibility to understand system and application behavior for
resource restrictions already implemented as a GREMLIN and other resources of interest. The attempt to
make the tool as general and useful for developers in different fields is one main aspect.

The tool is in the direct moral of co-design and supports mutual problem solving in system, software and
application design. The GREMLINs Framework tries to cover a broad spectrum of applications in HPC,
targeting C/C++ and Fortran using MPI. The lack of support for OpenMP and accelerators, GPGPU and
co-processors restricts the emulation to hardware architectures similar to the host system of the emulation.
With the underlying tools using PMPI extensions for the above mentioned technologies are possible as long as
MPI is combined in a hybrid MPI+X approach.

The scaling study conducted shows the impact of power limitations to multi node program executions. This
gives way to think about how these limits can be used for a more energy efficient systems operation. The more
important goal for HPC is combining energy efficiency with maximizing resource utilization. This implies,
for a given system, maximize the performance output, compared to minimizing the power spent to achieve a
set performance. These goals are similar but system costs are too high to have underutilized resources.

With the GREMLINs Framework co-design using the most efficient systems and understanding the
application behavior at scale can be studied. This helps to understand application behavior on next generation
HPC resources and can help developers identify caveats and explore capabilities to achieve high performance
independent of the underlying hardware. Emulating these systems requires adapting to the most efficient
paradigms currently in use. This indicates that in a rapidly changing environment relying on standards and
evaluating new possibilities of innovation is paramount. In regards to resource usage the proposition of
overprovisioning is one of these possibilities. A power balancing approach to save power without giving
up runtime has to be evaluated to implement overprovisioned systems without loss of efficiency. This gives
way to a first study of actual overprovisioning of compute resources in a non artificial environment.

37





Bibliography
[AMG 13] CENTER FOR APPLIED SCIENTIFIC COMPUTING (CASC) AT LLNL: AMG2013, 2013.

https://codesign.llnl.gov/amg2013.php (accessed on 2015-01-03).

[BGSY 11] BAKER, A.H., T. GAMBLIN, M. SCHULZ and U.M. YANG: Challenges of scaling algebraic
multigrid across modern multicore architectures. IEEE, 2011. In IPDPS ’11.

[CESAR 11] ARGONNE NATIONAL LABORATORY: CESAR: Center for Exascale Simulation of Advanced
Reactors an Office of Science Co-design Center, 2011. https://cesar.mcs.anl.
gov/ (accessed on 2014-12-20).

[CESAR 13] ARGONNE NATIONAL LABORATORY: The CESAR Proxy-apps, 2013. https://cesar.
mcs.anl.gov/content/software (accessed on 2015-01-03).

[CGBr 14] CASAS-GUIX, M. and G. BRONEVETSKY: Active Measurement of Memory Resource
Consumption. IEEE, 2014. In IPDPS ’14.

[CMake14] KITWARE: CMake, 2014. www.cmake.org (accessed on 2014-12-22).

[CoMD 13] EXMATEX TEAM AT LOS ALAMOS NATIONAL LABORATORY AND LAWRENCE
LIVERMORE NATIONAL LABORATORY: CoMD, 2013. http://www.exmatex.org/
comd.html (accessed on 2015-01-03).

[CUDA 12] NVIDIA CORPORATION: nvidia-smi - NVIDIA System Management Interface program,
2012. http://developer.download.nvidia.com/compute/cuda/6_0/
rel/gdk/nvidia-smi.331.38.pdf (accessed on 2015-02-05).

[DOE 09] Scientific Grand Challenges: Cross-Cutting Technologies for Computing at the Exascale
Workshop, San Diego, CA, 2009. Department of Energy Office of Science.

[DOE 10] ASCAC Subcommittee Report: The Opportunities and Challenges of Exascale Computing.
Department of Energy Office of Science, Fall 2010.

[ECLV 12] ETINSKI, M., J. CORBALAN, J. LABARTA and M. VALERO: Understanding the future
of energy-performance trade-off via DVFS in HPC environments. Journal of Parallel and
Distributed Computing, 72(4):579 – 590. Academic Press, 2012.

[ENBSH 11] EKLOV, D., N. NIKOLERIS, D. BLACK-SCHAFFER and E. HAGERSTEN: Cache Pirating:
Measuring the Curse of the Shared Cache. IEEE, 2011. In ICPP ’11.

[ENBSH 12] EKLOV, D., N. NIKOLERIS, D. BLACK-SCHAFFER and E. HAGERSTEN: Bandwidth Bandit:
Quantitative Characterization of Memory Contention. ACM, 2012. In PACT ’12.

[EOS 09] ENGELMANN, C, H.H. ONG and S.L. SCOTT: The Case for Modular Redundancy in
Large-Scale High Performance Computing Systems. ACTA Press, 2009. In PDCN ’09.

[ExMatEx 14a] EXMATEX TEAM AT LOS ALAMOS NATIONAL LABORATORY AND LAWRENCE
LIVERMORE NATIONAL LABORATORY: ExMatEx – DoE Exascale Co-Design Center for
Materials in Extreme Environments, 2014. www.exmatex.org (Accessed on 2014-12-19).

[ExMatEx 14b] EXMATEX TEAM AT LOS ALAMOS NATIONAL LABORATORY AND LAWRENCE
LIVERMORE NATIONAL LABORATORY: ExMatEx - Proxy Apps Overview, 2014. http:
//www.exmatex.org/proxy-over.html (Accessed on 2015-01-01).

[FaMY 02] FALGOUT, R.D. and U. MEIER YANG: hypre: A Library of High Performance
Preconditioners. Springer, 2002. In ICCS ’02.

39



Bibliography

[FeFr 04] FEMAL, M.E. and V.W. FREEH: Safe Overprovisioning: Using Power Limits to Increase
Aggregate Throughput. Springer, 2004. In PACS ’04.

[FiHe 13a] FISCHER, P.F. and K. HEISEY: NEKBONE: Thermal Hydraulics mini-application,
2013. https://cesar.mcs.anl.gov/sites/cesar.mcs.anl.gov/files/
nekbone_3.1_readme.pdf (Accessed on 2015-01-03).

[FiHe 13b] FISCHER, P.F. and K. HEISEY: Proxy-Apps for Thermal Hydraulics, 2013. https://
cesar.mcs.anl.gov/content/software/thermal_hydraulics (Accesed on
2015-01-12).

[FLK 08] FISCHER, P.F., J.W. LOTTES and S.G. KERKEMEIER: nek5000 Web page, 2008. http:
//nek5000.mcs.anl.gov (Accessed on 2014-12-20).

[G500 14] GREEN500: The Green500 List - November 2014, 2014. http://www.green500.org/
lists/green201411 (Accessed on 2014-12-05).

[GBB+ 12] GRAZIANI, F.R., V.S. BATISTA, L.X. BENEDICT, J.I. CASTOR, H. CHEN, S.N. CHEN,
C.A. FICHTL, J.N. GLOSLI, P.E. GRABOWSKI, A.T. GRAF and OTHERS: Large-scale
molecular dynamics simulations of dense plasmas: The Cimarron Project. High Energy
Density Physics, 8(1):105–131. Elsevier, 2012.

[GREM 14a] SCHULZ, M.: GitHub scalability-llnl/Gremlins. https://github.com/
scalability-llnl/Gremlins (Accessed on 2014-12-18).

[GREM 14b] SCHULZ, M.: GREMLINs: Emulating Exascale Conditions on Today’s Platforms. https:
computation.llnl.gov/project/gremlins/ (Accessed on 2014-12-18).

[HFG+ 11] HOWARD, D., C. FALLIN, E. GORBATOV, U.R. HANEBUTTE and O. MUTLU: Memory
Power Management via Dynamic Voltage/Frequency Scaling. ACM, 2011. In ICAC ’11.

[HNS 13] HEROUX, M., R. NEELY and S. SWAMIARAYAN: ASC Co-design Proxy App Strategy,
January 2013. https://codesign.llnl.gov/pdfs/proxyapps_20130106.
pdf (Accessed on 2014-12-31).

[Intel 09] INTEL: Intel 64 and IA-32 Architectures Software Develper’s Manual, Volume 3B: System
Programming Guide. Intel, 2009. pp. 484ff.

[Intel 12] INTEL CORPORATION: Intel R© Xeon R© Processor E5-2670
Specifications, 2012. http://ark.intel.com/products/64595/
Intel-Xeon-Processor-E5-2670-20M-Cache-2_60-GHz-8_
00-GTs-Intel-QPI (Accessed on 2015-01-14).

[KGL 06] KADAU, K., T.C. GERMANN and P.S. LOMDAHL: Molecular Dynamics Comes of Age:
320 Billion Atom Simulation on BlueGene/L. International Journal of Modern Physics C,
17(12):1755–1761. World Scientific, 2006.

[LC 10] LIVERMORE COMPUTING (LC), LLNL: Linux @ Livermore, 2010. https://
computing.llnl.gov/linux/projects.html (Accessed on 2015-01-14).

[LC 14] LIVERMORE COMPUTING (LC), LLNL: Open Computing Facility-OCF, Resource
overview: Cab, October 2014. https://computing.llnl.gov/?set=
resources&page=OCF_resources#cab (Accessed on 2015-01-14).

[libra 08] GAMBLIN, TODD: GitHub tgamblin/libra, 2008. https://github.com/tgamblin/
libra (Accessed on 2014-12-19).

[LRZ 13] LRZ: SuperMUC Best Practice Guide v0.2, January
2013. http://www.lrz.de/services/compute/
supermuc/manuals/Best-Practice-Guide-SuperMUC/
Best-Practice-Guide-SuperMUC-html/#id-1.5.13 (Accessed on
2014-12-22).

40



Bibliography

[McPh 13] MCPHERSON, A.: exmatex/CoMD, 2013. https://github.com/exmatex/CoMD
(Accessed on 2015-01-16).

[MPI 14] MPI FORUM: Message Passing Interface Forum, May 2014. www.mpi-forum.org
(Accessed on 2014-21-20).

[OSU 14] THE OHIO STATE UNIVERSITY: MVAPICH2, 2014. mvapich.cse.ohio-state.edu
(Accessed on 2015-01-16).

[PLR+ 13] PATKI, T., D.K. LOWENTHAL, B. ROUNTREE, M. SCHULZ and B.R. DE SUPINSKI:
Exploring Hardware Overprovisioning in Power-constrained, High Performance Computing.
ACM, 2013. In ICS ’13.

[PnMPI 09] SCHULZ, M.: GitHub scalability-llnl/PnMPI, 2009. https://github.com/
scalability-llnl/PnMPI (Accessed on 2014-12-18).

[RAdS+ 12] ROUNTREE, B., D.H. AHN, B.R. DE SUPINSKI, D.K. LOWENTHAL and M. SCHULZ:
Beyond DVFS: A First Look at Performance Under a Hardware-Enforced Power Bound.
IEEE, 2012. In IPDPSW ’12.
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